
Approximation Algorithms

Md. Saidur Rahman,
Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology,
Dhaka, Bangladesh.

1/19



Decision Problems

Decision Problems
A decision problem is an algorithmic problem whose answer is
“yes” or “no”.

2/19



Decision Problems

Decision Problems
A decision problem is an algorithmic problem whose answer is
“yes” or “no”.

2/19



Decision Problems

Decision Problems
A decision problem is an algorithmic problem whose answer is
“yes” or “no”.
Does a given Turing machine halt on a given input?

2/19



Decision Problems

Decision Problems
A decision problem is an algorithmic problem whose answer is
“yes” or “no”.
Does a given Turing machine halt on a given input?
Not Computable!

2/19



Decision Problems

Decision Problems
A decision problem is an algorithmic problem whose answer is
“yes” or “no”.
Does a given Turing machine halt on a given input?
Not Computable!
Is a given natural number a prime number?

2/19



Decision Problems

Decision Problems
A decision problem is an algorithmic problem whose answer is
“yes” or “no”.
Does a given Turing machine halt on a given input?
Not Computable!
Is a given natural number a prime number?
A computable problem.

2/19



Optimization Problems

Optimaization Problem

An optimization problem Π consists of a set of instances I, a
set of solutions O, and three functions sol: I → P(O), quality: I
× O→R, and goal ∈ min,max .

3/19



Optimization Problems

Optimaization Problem

An optimization problem Π consists of a set of instances I, a
set of solutions O, and three functions sol: I → P(O), quality: I
× O→R, and goal ∈ min,max .

3/19



Optimization Problems

Optimaization Problem

An optimization problem Π consists of a set of instances I, a
set of solutions O, and three functions sol: I → P(O), quality: I
× O→R, and goal ∈ min,max .
For every instance I ∈ I, sol(I) ⊆ O denotes the set of feasible
solutions for I.

3/19



Optimization Problems

Optimaization Problem

An optimization problem Π consists of a set of instances I, a
set of solutions O, and three functions sol: I → P(O), quality: I
× O→R, and goal ∈ min,max .
For every instance I ∈ I, sol(I) ⊆ O denotes the set of feasible
solutions for I.
For every instance I ∈ I and every feasible solution O ∈ sol(I) ,
quality (I,O) denotes the measure of I and O. An optimal
solution for an instance I ∈ I of Π is a solution OPT (I) ∈ sol(I)
such that
quality (I,OPT (I)) = goal { quality (I,O) | O ∈ sol(I)}.

3/19



Optimization Problems

Optimaization Problem

An optimization problem Π consists of a set of instances I, a
set of solutions O, and three functions sol: I → P(O), quality: I
× O→R, and goal ∈ min,max .
For every instance I ∈ I, sol(I) ⊆ O denotes the set of feasible
solutions for I.
For every instance I ∈ I and every feasible solution O ∈ sol(I) ,
quality (I,O) denotes the measure of I and O. An optimal
solution for an instance I ∈ I of Π is a solution OPT (I) ∈ sol(I)
such that
quality (I,OPT (I)) = goal { quality (I,O) | O ∈ sol(I)}.
If goal = min, we call Π a minimization problem and write “cost”
instead of “quality.” Conversely, if goal=max, we say that Π is a
maximization problem and write “gain” instead of “quality.”

3/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?
Minimization problem.

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?
Minimization problem.

Independent Set Problem

Find the independent set in a graph as large as possible.

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?
Minimization problem.

Independent Set Problem

Find the independent set in a graph as large as possible.

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?
Minimization problem.

Independent Set Problem

Find the independent set in a graph as large as possible.
Maximization problem.

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?
Minimization problem.

Independent Set Problem

Find the independent set in a graph as large as possible.
Maximization problem.

Vertex Cover Problem
Find the vertex cover in a graph as small as possible.

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?
Minimization problem.

Independent Set Problem

Find the independent set in a graph as large as possible.
Maximization problem.

Vertex Cover Problem
Find the vertex cover in a graph as small as possible.

4/19



Optimization Problems

Traveling Salesperson Problem (TSP)

Given a traffic network, what is the fastest tour that visits all
cities on the map exactly once and returns to the starting point?
Minimization problem.

Independent Set Problem

Find the independent set in a graph as large as possible.
Maximization problem.

Vertex Cover Problem
Find the vertex cover in a graph as small as possible.
Minimixation problem.

All those problems are NP-hard problems.
It is unlikely to have polynomial time algorithms.

4/19



Coping with Hardness

How to deal with hard problems?

5/19



Coping with Hardness

How to deal with hard problems?

Desired Objective or requirements

5/19



Coping with Hardness

How to deal with hard problems?

Desired Objective or requirements

find optimal solution

5/19



Coping with Hardness

How to deal with hard problems?

Desired Objective or requirements

find optimal solution

in polynomial time

5/19



Coping with Hardness

How to deal with hard problems?

Desired Objective or requirements

find optimal solution

in polynomial time

for any instance

5/19



Coping with Hardness

How to deal with hard problems?

Desired Objective or requirements

find optimal solution

in polynomial time

for any instance

5/19



Coping with Hardness

How to deal with hard problems?

Desired Objective or requirements

find optimal solution

in polynomial time

for any instance

At least one of these requirements must be relaxed in any
approch to dealing with NP-hard optimization problems.

5/19



Coping with Hardness

How to deal with hard problems?

Desired Objective or requirements

find optimal solution

in polynomial time

for any instance

At least one of these requirements must be relaxed in any
approch to dealing with NP-hard optimization problems.
Approximation Algorithms relax the first requirement.

5/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

select an edge e = (v ,w) of G;

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

select an edge e = (v ,w) of G;
add vertices v and w to C;

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

select an edge e = (v ,w) of G;
add vertices v and w to C;
for each edge f incident to v or w
do

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

select an edge e = (v ,w) of G;
add vertices v and w to C;
for each edge f incident to v or w
do

remove f from G;

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

select an edge e = (v ,w) of G;
add vertices v and w to C;
for each edge f incident to v or w
do

remove f from G;
end for

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

select an edge e = (v ,w) of G;
add vertices v and w to C;
for each edge f incident to v or w
do

remove f from G;
end for

end while

6/19



Vertex Cover Problem: An Approximation

Algorithm VertexCoverApprox(G,C)
C := ∅;
while G still has edges do

select an edge e = (v ,w) of G;
add vertices v and w to C;
for each edge f incident to v or w
do

remove f from G;
end for

end while
return C

6/19



Approximation Algorithms

Approximation Algorithm

Let Π be an optimization problem, and let ALG be a consistent
algorithm for Π.

7/19



Approximation Algorithms

Approximation Algorithm

Let Π be an optimization problem, and let ALG be a consistent
algorithm for Π.

7/19



Approximation Algorithms

Approximation Algorithm

Let Π be an optimization problem, and let ALG be a consistent
algorithm for Π.
For r ≥ 1, ALG is an r-approximation algorithm for Π if, for
every I ∈ I,
gain (OPT (I))≤ r . gain (ALG (I)) if Π is maximization problem,
or
cost (ALG (I))≤ r . cost (OPT (I))
if Π is minimization problem.

7/19



Approximation Algorithms

Approximation Algorithm

Let Π be an optimization problem, and let ALG be a consistent
algorithm for Π.
For r ≥ 1, ALG is an r-approximation algorithm for Π if, for
every I ∈ I,
gain (OPT (I))≤ r . gain (ALG (I)) if Π is maximization problem,
or
cost (ALG (I))≤ r . cost (OPT (I))
if Π is minimization problem.
The approximation ratio of ALG is defined as
rALG := inf{r ≥ 1 | ALG is an r - approximation algorithm for Π}.

7/19



Approximation Algorithms

Simple Knapsack Problem

The simple knapsack problem is a maximization problem.

8/19



Approximation Algorithms

Simple Knapsack Problem

The simple knapsack problem is a maximization problem.

8/19



Approximation Algorithms

Simple Knapsack Problem

The simple knapsack problem is a maximization problem.
An instance I is given by a sequence of n + 1 positive integers
B, w1,w2, · · · ,wn, where we consider wi with 1 ≤ i ≤ n to be
the weight of the ith object;
B is the capacity of the knapsack.

8/19



Approximation Algorithms

Simple Knapsack Problem

The simple knapsack problem is a maximization problem.
An instance I is given by a sequence of n + 1 positive integers
B, w1,w2, · · · ,wn, where we consider wi with 1 ≤ i ≤ n to be
the weight of the ith object;
B is the capacity of the knapsack.
A feasible solution for I is any set O ⊆ {1, 2, · · · , n} such that

∑

i∈O

wi ≤ B

8/19



Approximation Algorithms

Simple Knapsack Problem

The simple knapsack problem is a maximization problem.
An instance I is given by a sequence of n + 1 positive integers
B, w1,w2, · · · ,wn, where we consider wi with 1 ≤ i ≤ n to be
the weight of the ith object;
B is the capacity of the knapsack.
A feasible solution for I is any set O ⊆ {1, 2, · · · , n} such that

∑

i∈O

wi ≤ B

The gain of a solution O and a corresponding instance I is
given by
gain (I,O) =

∑
i∈O wi .

The goal is to maximize this number.

8/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;
sort w1,w2, · · · ,wn

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;
sort w1,w2, · · · ,wn

while i < n and s +
wi+1 ≤ B do

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;
sort w1,w2, · · · ,wn

while i < n and s +
wi+1 ≤ B do

O := O ∪ i + 1

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;
sort w1,w2, · · · ,wn

while i < n and s +
wi+1 ≤ B do

O := O ∪ i + 1
s := s + wi+1

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;
sort w1,w2, · · · ,wn

while i < n and s +
wi+1 ≤ B do

O := O ∪ i + 1
s := s + wi+1

i := i + 1

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;
sort w1,w2, · · · ,wn

while i < n and s +
wi+1 ≤ B do

O := O ∪ i + 1
s := s + wi+1

i := i + 1
output O

9/19



Algorithm: KNGREEDY for the simple knapsack
problem

O := θ;
s := 0;
i := 0;
sort w1,w2, · · · ,wn

while i < n and s +
wi+1 ≤ B do

O := O ∪ i + 1
s := s + wi+1

i := i + 1
output O

end while

9/19



Approximation Algorith (Simple Knapsack Problem)

Theorem

KNGREEDY is a polynomial-time 2-approximation algorithm for
the simple knapsack problem.

10/19



KNGREEDY is a polynomial-time 2-approximation
algorithm for the simple knapsack problem

Proof.
Case 1. If all objects fit into the knapsack, then
KNGREEDY is even optimal

11/19



KNGREEDY is a polynomial-time 2-approximation
algorithm for the simple knapsack problem

Proof.
Case 1. If all objects fit into the knapsack, then
KNGREEDY is even optimal
Case 2. Assume total weight is larger than B

11/19



KNGREEDY is a polynomial-time 2-approximation
algorithm for the simple knapsack problem

Proof.
Case 1. If all objects fit into the knapsack, then
KNGREEDY is even optimal
Case 2. Assume total weight is larger than B

Case 2.1. Suppose wi of weight at least B/2.
w1 ≥ B/2 and w1 is always packed into knapsack. Since B
is an upper bound for any solution, the approximation ratio
of KNGREEDY is at most 2 in this case.

11/19



KNGREEDY is a polynomial-time 2-approximation
algorithm for the simple knapsack problem

Proof.
Case 1. If all objects fit into the knapsack, then
KNGREEDY is even optimal
Case 2. Assume total weight is larger than B

Case 2.1. Suppose wi of weight at least B/2.
w1 ≥ B/2 and w1 is always packed into knapsack. Since B
is an upper bound for any solution, the approximation ratio
of KNGREEDY is at most 2 in this case.
Case 2.2. Suppose weight of all objects are smaller than
B/2, j be the index of the first object that is too heavy to be
packed into the knapsack by KNGREEDY.
wj < B/2
this implies that space that is already occupied by the
objects w1,w2, · · · ,wj−1 must be larger than B/2. the
approximation ratio of KNGREEDY is at most 2 in this case.

11/19



Chapter 1 (Simple Knapsack Problem)

The original instance

The sorted instance The solution

Figure: The greedy strategy; first sort, then pack greedily what fits.

12/19



Chapter 1 (Simple Knapsack Problem)

The original instance

The sorted instance The solution

Figure: The greedy strategy; first sort, then pack greedily what fits.

13/19



Chapter 1 (Simple Knapsack Problem)

rKNGREEDY ≥ gain(OPT (I))
gain(KNGREEDY (I)) =

B
B
2 +1

= 2
1+ 2

B

14/19



Approximability

APX

The class APX (an abbreviation of ”approximable”) is the set of
NP optimization problems that allow polynomial-time
approximation algorithms with approximation ratio bounded by
a constant (or constant-factor approximation algorithms for
short). In simple terms, problems in this class have efficient
algorithms that can find an answer within some fixed
multiplicative factor of the optimal answer.

15/19



Approximability

PTAS

If there is a polynomial-time δ-approximation algorithms with
δ = 1 + ǫ, for any fixed value ǫ > 0 to solve a problem, then the
problem is said to have a polynomial-time approximation
scheme (PTAS). The running time depends on input size and ǫ.
Unless P=NP there exist problems that are in APX but without a
PTAS, so the class of problems with a PTAS is strictly
contained in APX

16/19



Approximability

PTAS

If there is a polynomial-time δ-approximation algorithms with
δ = 1 + ǫ, for any fixed value ǫ > 0 to solve a problem, then the
problem is said to have a polynomial-time approximation
scheme (PTAS). The running time depends on input size and ǫ.
Unless P=NP there exist problems that are in APX but without a
PTAS, so the class of problems with a PTAS is strictly
contained in APX

Fully polynomial-time approximation scheme (FPTAS)

An algorithm that achieves an arbitrarily good approximation
ratio of 1 + ǫ in a time that is polynomial both in n and 1/ǫ is
called a fully polynomial-time approximation scheme (FPTAS).

16/19



Hard for Approximation

APX-Hard

A problem is said to be APX-hard if there is a PTAS reduction
from every problem in APX to that problem, and to be
APX-complete if the problem is APX-hard and also in APX. As
a consequence of P 6= NP ⇒ PTAS 6= APX , if P 6= NP is
assumed, no APX-hard problem has a PTAS.

TSP problem is APX-hard.

17/19



NP-hard, APX-hard, APX, PTAS and FPTAS

18/19



NP-hard, APX-hard, APX, PTAS and FPTAS

TSP problem is APX-hard.

18/19



Approximation for TSP Satisfying Triangle Inequality

On whiteboard.

19/19


