
Distribution of Distinguishable Objects to Bins:

Generating All Distributions

(Extended Abstract)

Muhammad Abdullah Adnan and Md. Saidur Rahman

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology (BUET),

Dhaka-1000, Bangladesh.
{adnan,saidurrahman}@cse.buet.ac.bd

Abstract. In this paper we give an algorithm to generate all distribu-
tions of distinguishable objects to bins without repetition. Our algorithm
generates each distribution in constant time. To the best of our knowl-
edge, our algorithm is the first algorithm which generates each solution
in O(1) time in ordinary sense. As a byproduct of our algorithm, we get
a new algorithm to enumerate all multiset partitions when the number
of partitions is fixed and the partitions are numbered. In this case, our
algorithm generates each multiset partition in constant time (in ordi-
nary sense). Finally, we extend our algorithm for the case when the bins
have priorities associated with them. Overall space complexity of our
algorithm is O(km), where there are m bins and the objects fall into k

different classes.

Key words: Combinatorial Objects, Algorithm, Generating Problems, Mul-
tiset, Set Partitions.

1 Introduction

A well known counting problem in combinatorics is counting the number of
ways objects can be distributed among bins [AU95,R00,AR06]. The paradigm
problem is counting the number of ways of distributing fruits to children. For
example, Kathy, Peter and Susan are three children. We have four fruits to
distribute among them without cutting the fruits into parts. In how many ways
the children receive fruits? The fruits or the objects, that we want to distribute,
may be identical or of different kinds. Based on this criteria, the problem can
be subdivided into two parts - identical case and non-identical case. Since the
latter is more general, in this paper we will focus on the non-identical case and
we call such objects as “distinguishable objects”. Let there are m bins and n
distinguishable objects where the objects fall into k different classes. Objects

M. Kaykobad and Md. Saidur Rahman (Eds.): WALCOM 2007, pp. 136–150, 2007.

Distribution of Distinguishable Objects to Bins 137

within a class are identical with each other, but are distinguishable from those
of other classes. Let nj represent the number of objects in the jth class where
1 ≤ j ≤ k. The paradigm problem is distributing different types of fruits to
children. Suppose we have three apples, two pears and a banana to distribute to
Kathy, Peter and Susan. Then m = 3, which is the number of children. There
are k = 3 groups, with n1 = 3, n2 = 2, and n3 = 1. Since there are 6 objects in
total, so n = 6.

Now the question is - Can we count the number of solutions? For identical ob-

jects, the number of distributions for m bins and n identical objects is (n+m−1)!
n!(m−1)!

[AU95,R00,AR06]. We use this formula to solve the counting problem for dis-
tinguishable objects as follows. We first distribute the fruits of class 1 to all the

bins. The number of such distributions with n1 objects and m bins is (n1+m−1)!
n1!(m−1)! .

Then we distribute the objects of second class and so on up to kth class. Thus
the total number of distributions will be the product of all these solutions as in
the following expression:

(n1 + m − 1)!

n1!(m − 1)!
.
(n2 + m − 1)!

n2!(m − 1)!
. . . .

(nk + m − 1)!

nk!(m − 1)!

Let D(n, m, k) represents the set of all distributions of n objects to m bins
where the objects fall into k different classes and each bin gets zero or more
objects. For the previous example, we have D(6, 3, 3) representing all distribu-
tions where the number of distribution is 5!

3!2! .
4!

2!2! .
3!

1!2! = 180. Thus we count
the number of distributions. However, in this paper we are not interested in
counting the number of distributions, rather we are interested in generating all
distributions. Generating all distributions has practical applications in channel
allocation in computer networks, CPU scheduling, memory management, etc.
[AR06,T02,T04]. In these days of automation, machines may also require to
distribute objects among candidates optimally.

Generating the complete list of all solutions of such combinatorial problems
has many useful applications. For example, one can use such a list to search for a
counter-example to some conjecture, to find best solution among all solutions or
to test and analyze an algorithm for its correctness or computational complexity.
Early works in combinatorics focused on counting; because generating all objects
requires huge computation. With the aid of fast computers it now has become
feasible to list the objects in combinatorial classes. However, in order to generate
entire list of objects from a class of moderate size, extremely efficient algorithms
are required even with the fastest computers. Due to the reason mentioned above,
recently many researchers have concentrated their attention for developing effi-
cient algorithms to generate all objects of a particular class without repetitions
[K06]. Examples of such exhaustive generation of combinatorial objects include
generating all integer partition and set partitions, enumerating all binary trees,
generating permutations and combinations, enumerating spanning trees, etc.
[AR06,KN05,ZS98,NU03,YN04,FL79,NU04,NU05,BS94,S97,K06]. Generally, gen-
erating algorithms produce huge outputs, and the outputs dominate the running

138 M. A. Adnan and Md. Saidur Rahman

time of the generating algorithms. Therefore, many generating algorithms output
solutions in an order such that each solution differs from the preceding one by a
very small amount, and output each solution as the “difference” from the preced-
ing one. Such orderings of solutions are known as Gray codes [S97,KN05,AR06].

Klingsberg [K82] gave an average constant time algorithm for sequential list-
ing of the composition of an integer n into k parts. Using efficient tree traversal
technique, Adnan and Rahman [AR06] improved the time complexity to con-
stant time (in ordinary sense) and gave an efficient algorithm to generate all
distribution of objects to bins when the objects are identical. They used effi-
cient generation method based on the family tree structure of the distributions.
However, in this paper we are interested in generating all distributions of distin-
guishable objects. This problem is more difficult than that of the identical case
since the solution space is large. If we apply the algorithm for identical objects
for distinguishable objects, there will be omission of distributions. Hence the
algorithm for generating identical objects is not applicable for distinguishable
objects.

The problem of generating all distribution of distinguishable objects can be
viewed as generating multiset partitions when the partitions are “fixed”, “num-
bered” and “ordered”. That means the number of partitions is fixed, the parti-
tions are numbered and the assigned numbers to bins are not altered. Kawano
and Nakano [KN06] gave an algorithm to generate multiset partition but the
algorithm does not give solutions in constant time in ordinary sense. Using the
algorithm [KN05] for set partition their algorithm [KN06] constructs a family
tree for each type of element. Then they combine the solutions of each family
tree to output each multiset partition. Since there are k family trees for k types
of elements in the set, their algorithm takes O(k) time to generate each solution.
Their method is not applicable here since the partitions are fixed, ordered and
numbered. Also we need to construct only one family tree for all solutions. Hence
there is no need for recombination and our algorithm generates each solution in
constant time for fixed, numbered and ordered partitions.

In this paper we give an algorithm to generate all distributions of n distin-
guishable objects to m bins where the objects fall into k different classes. Here,
the number of bins is fixed and the bins are numbered and ordered. Our algo-
rithm generates each distribution in constant time without repetition. The main
feature of our algorithm is that we define a tree structure, that is parent-child
relationships, among the distributions in D(n, m, k) (see Figure 1). In such a
“tree of distributions”, each node corresponds to a distribution of objects to
bins and each node is generated from its parent in constant time. In our algo-
rithm, we construct the tree structure among the distributions in such a way
that the parent-child relationship is unique, and hence there is no chance of
producing duplicate distributions. Once such a parent-child relationship is es-
tablished, one can generate all the distributions in D(n, m, k) by traversing the
tree using the relationship. But the problem of ordinary traversal is that after
generating a distribution corresponding to the last vertex in the largest level
in the tree, we have to merely return from the deep recursive call without out-

Distribution of Distinguishable Objects to Bins 139

putting any sequence and hence ordinary traversal generates each distribution
in constant time “on average”. To generate each distribution in O(1) time (in
ordinary sense), we define two additional types of relationships: (i) Relationship
between left sibling and right sibling and (ii) Leaf-ancestor relationship. Thus
our algorithm reduces many non-generation steps and outputs each distributions
in constant time in ordinary sense (not in average sense). Our algorithm, gen-
erates a new distribution from an existing one by making a constant number
of changes and outputs each distribution as the difference from the preceding
one. Thus we can regard the derived sequence of the outputs as a combinatorial
Gray code [S97,KN05,R00] for distributions. Our algorithm also generates the
distributions in place, that means, the space complexity is linear. To the best of
our knowledge, our algorithm is the first algorithm to generate all distribution in
constant time per distribution in ordinary sense. We also extend our algorithm
for the case when the bins have priorities associated with them. In this case, the
bins are numbered in the order of priority. The sequence of generations maintain
an order so that the successive generations maintain priority.

Level 0 ((0,0),(0,0),(2,1))

((0,0),(2,0),(0,1)) ((0,0),(0,1),(2,0)) ((0,0),(1,1),(1,0)) ((0,0),(2,1),(0,0))((0,0),(1,0),(1,1))

((2,0),(0,0),(0,1))((1,0),(1,0),(0,1))

Level 1

((0,1),(0,0),(2,0))

((1,0),(0,1),(1,0)) ((0,1),(1,0),(1,0)) ((1,1),(0,0),(1,0))

((1,0),(1,1),(0,0)) ((2,0),(0,1),(0,0)) ((0,1),(2,0),(0,0)) ((1,1),(1,0),(0,0)) ((2,1),(0,0),(0,0))

Level 2

((1,0),(0,0),(1,1))

Fig. 1. The Family Tree T3,3,2.

The rest of the paper is organized as follows. Section 2 gives some definitions.
In Section 3, we define a tree structure among distributions in D(n, m, k). In Sec-
tion 4, we present the algorithm for generating all distributions of distinguishable
objects to bins. Finally Section 5 is a conclusion.

2 Preliminaries

In this section we define some terms used in this paper.
In mathematics and computer science, a tree is a connected graph without

cycles. A rooted tree is a tree with one vertex r chosen as root. A leaf in a tree
is a vertex of degree 1. Each vertex in a tree is either an internal vertex or a
leaf. A family tree is a rooted tree with parent-child relationship. The vertices
of a rooted tree have levels associated with them. The root has the lowest level

140 M. A. Adnan and Md. Saidur Rahman

i.e. 0. The level for any other node is one more than its parent except root.
Vertices with the same parent v are called siblings. The siblings may be ordered
as c1, c2, . . . , cl where l is the number of children of v. If the siblings are ordered
then ci−1 is the left sibling of ci for 1 < i ≤ l and ci+1 is the right sibling of
ci for 1 ≤ i < l. The ancestors of a vertex other than the root are the vertices
in the path from the root to this vertex, excluding the vertex and including the
root itself. The descendants of a vertex v are those vertices that have v as an
ancestor. A leaf in a family tree has no children.

For a positive integer n and k < n, set partition is the set of all partitions of
{1, 2, . . . , n} into k non-empty subsets. For instance, for n = 4 and k = 2 there
are seven such partitions:

{1, 2, 3}∪{4}, {1, 2, 4}∪{3}, {1, 3, 4}∪{2}, {2, 3, 4}∪{1}, {1, 2}∪{3, 4},
{1, 3} ∪ {2, 4}, {1, 4} ∪ {2, 3}.

A simple set is a collection of elements where all the elements are identical.
A multiset is a collection of elements where all the elements are not identical.
The elements of a multiset fall into different classes where the elements in the
same class are identical but are distinguishable from those of other classes. For
example, {1,1,2,3,1,3,2,2} is an example of multiset.

For positive integer k, let a be a sequence of positive integers t1, t2, . . . , tk
where tj ≥ 0 for 1 ≤ j ≤ k. We call a as zero sequence if t1 = t2 = · · · = tk = 0.
That means all the integers in a zero sequence are 0. We call a as nonzero
sequence if there exists an index j, 1 ≤ j ≤ k, such that tj 6= 0. That means
a sequence is nonzero if at least one of the integers in the sequence is nonzero.
Let b be another sequence of positive integers u1, u2, . . . , uk for 1 ≤ j ≤ k. By
addition of two sequences a + b we mean the addition of corresponding elements
tj + uj where 1 ≤ j ≤ k. Similarly, by subtraction of two sequences a − b we
mean the subtraction of corresponding elements tj − uj where 1 ≤ j ≤ k and by
equality of two sequences a = b we mean the equality of corresponding elements
tj = uj where 1 ≤ j ≤ k.

A listing of combinatorial objects is said to be in gray code order if each
successive combinatorial objects in the listing differs by a constant amount. For
example, the swapping of elements, or the flipping of a bit. In this paper, we
establish such an ordering of all distribution of objects to bins so that each
distribution can be generated by making constant amount of changes to the
preceding distribution in the order.

For positive integers n, m and k, let A ∈ D(n, m, k) be a distribution of n
objects to m bins where the objects fall into k classes. Let nj represent the num-
ber of objects in the jth class where 1 ≤ j ≤ k. Clearly, n1 + n2 + · · · + nk = n
since every object must be in a class. The bins are ordered and numbered as
B1, B2, . . . , Bm. Each bin contains objects of different classes. We order the dif-
ferent types of objects in a bin so that we can keep track of objects of differ-
ent classes. Let ai be a sequence of positive integers (ti1, ti2, . . . , tik) where tij
represents the number of objects of jth type in ith bin Bi, for 1 ≤ i ≤ m,
1 ≤ j ≤ k. Then we can represent each A ∈ D(n, m, k) by a unique sequence

Distribution of Distinguishable Objects to Bins 141

(a1, a2, . . . , am). We call each ai an inner sequence of A. The sequence for A
is unique for each distribution because the bins are ordered and numbered
and also the objects of different types are ordered. For example, the sequence
((0, 0), (2, 1)) represents there are 2 bins because there are 2 sequence of se-
quences of integers and 3 objects which is sum of all the integers in the sequence
and there are 2 classes of objects where 2 objects are from class 1 and 1 object
from class 2. Also the second bin contains 3 objects i.e. 2 objects from class 1
and 1 object from class 2 and the first bin is empty (see Figure 2).

��
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
� ((0,0),(2,1))

Fig. 2. Representation of a distribution of 3 objects to 2 bins where the objects fall
into two classes and 2 objects from class 1 and 1 object from class 2.

For each such sequence of sequences in D(n, m, k), we have the following
equations:

m∑

i=1

k∑

j=1

tij = n, (1)

m∑

i=1

tij = nj , for 1 ≤ j ≤ k, and (2)

k∑

j=1

nj = n. (3)

Equation 1 describes that the sum of all the integers in the sequence of
sequences in equal to the total number of objects. This holds because the number
of objects are fixed and every object is distributed somewhere in some bin. In
Equation 2, we describe that every object of same kind are present in the
sequence. Since every object must be in a class Equation 3 holds.

In the following sections we give an algorithm to generate all distributions
of distinguishable objects to bins. For that purpose we define a unique parent-
child relationship among the distributions in D(n, m, k) so that the relationship
among the distributions can be represented by a tree with a suitable distribution
as the root. Figure 1 shows such a tree of distributions where each distribution
in the tree is in D(3, 3, 2). Once such a parent-child relationship is established,
we can generate all the distributions in D(n, m, k) using the relationship. We

142 M. A. Adnan and Md. Saidur Rahman

do not need to build or store the entire tree of distributions at once, rather we
generate each distribution in the order it appears in the tree structure.

In Section 3 we define a tree structure among distributions in D(n, m, k) and
in Section 4 we present our algorithm which generates each solution in O(1) time
in ordinary sense.

3 The Family Tree of Distributions

In this section we define a tree structure Tn,m,k among the distributions in
D(n, m, k).

For positive integers n, m and k, let A ∈ D(n, m, k) be a distribution of
n objects to B1, B2, . . . , Bm bins where the objects fall into k classes. Let nj

represent the number of objects in the jth class where 1 ≤ j ≤ k. From Equation
3, n1+n2+ · · ·+nk = n. For each A ∈ D(n, m, k), we define a unique sequence of
sequences of positive integers (a1, a2, . . . , am), where ai represents a sequence of
integers (ti1, ti2, . . . , tik) where tij represents the number of objects of jth type
in ith bin Bi, for 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Now we define the family tree Tn,m,k as follows. Each node in Tn,m,k repre-
sents a distribution in D(n, m, k). If there are m bins then there are m levels
in Tn,m,k. A node is in level i, 0 ≤ i < m in Tn,m,k if tlj = 0 for 1 ≤ j ≤ k,
1 ≤ l < (m − i) and a(m−i) is nonzero sequence. So, a node at level m − 1
has no leftmost inner zero sequence before leftmost inner nonzero sequence. As
the level increases the number of leftmost inner zero sequence decreases and
vice versa. Since the family tree is a rooted tree we need a root and the root
is a node at level 0. One can observe that a node is at level 0 in Tn,m,k if
tlj = 0 for 1 ≤ j ≤ k, 1 ≤ l < (m) and tmj 6= 0 for 1 ≤ j ≤ k. We also

have from Equation 1 that
∑m

i=1

∑k

j=1 tij = n. Substituting the values for tlj

for 1 ≤ j ≤ k, 1 ≤ l < (m) we find that
∑k

j=1 tmj = n. By using Equa-
tion 2 and Equation 3, we get tmj = nj where 1 ≤ j ≤ k. Thus we can say
that there can be exactly one such node which is our root. So, the sequence
for root is ((0, . . . , 0), (0, . . . , 0), . . . , (0, . . . , 0), (n1, n2, . . . , nk)). In other words,
we can say that the number of leftmost inner zero sequence before any inner
nonzero sequence in root is greater than any other sequence for any distribution
in D(n, m, k).

To construct Tn,m,k, we define two types of relationships: (a) Parent-child re-
lationship and (b) Child-parent relationship among the distributions in D(n, m, k)
which are discussed in the following sections.

(a) Child-Parent Relationship
It is convenient to consider the child-parent relationship before the parent-

child relationship. Let A ∈ D(n, m, k) be a sequence of sequences (a1, a2, . . . , am)
which is not a root sequence, where al represents a sequence of integers tlj for
1 ≤ j ≤ k, 1 ≤ l ≤ m. The sequence A corresponds to a node of level i,
1 ≤ i < m. So, we have tlj = 0 for 1 ≤ j ≤ k, 1 ≤ l < (m − i) and a(m−i) is a
nonzero sequence. Let A′ ∈ D(n, m, k) be another sequence of sequences (p1, p2,
. . ., pm−i, pm−i+1, . . . ,pm), 1 ≤ i < m such that p1 = p2 = · · · = pm−i are zero

Distribution of Distinguishable Objects to Bins 143

sequences and pm−i+1 = am−i +am−i+1 and pl = al for m− i+1 < l ≤ m. Then
A′ is at level i − 1 of Tn,m,k. We call the sequence A′ as the parent sequence of
A. Thus for each consecutive level we only deal with two sequences am−i−1 and
am−i and the rest of the sequences remain unchanged. The number of leftmost
inner zero sequence increases in the parent sequence by applying child-parent
relationship. For example, the solution ((1, 1), (1, 0)), for n = 3, m = 2, k = 2
and n1 = 2, n2 = 1, is a node of level 1 because a1 is a nonzero sequence. It has
a unique parent ((0, 0), (2, 1)) as shown in Figure 3.

(b) Parent-Child Relationship
The parent-child relationship is just the reverse of child-parent relationship.

Let A ∈ D(n, m, k) be a sequence (a1, a2, . . . , am), where al represents a sequence
of integers tlj for 1 ≤ j ≤ k, 1 ≤ l ≤ m. The sequence A corresponds to a node of
level i, 0 ≤ i < m. So, we have tlj = 0 for 1 ≤ j ≤ k, 1 ≤ l < (m− i) and a(m−i)

is a nonzero sequence. Let A′ ∈ D(n, m, k) be another sequence of sequences (c1,
c2, . . ., cm−i−1, cm−i, . . ., cm), 0 ≤ i < m such that c1, c2, . . . , cm−i−2 are zero
sequences, cm−i−1 + cm−i = am−i, cm−i−1 is a nonzero sequence and cl = al for
m− i+1 ≤ l ≤ m. Then A′ is at level i+1 of Tn,m,k. We call the sequence A′ as
the child sequence of A. Like the child-parent relationship here we also deal with
only two inner sequences am−i−1 and am−i and the rest of the sequences remain
unchanged. Hence from the child-parent relationship, one can observe that the
number of children of A is equal to (

∏k

j=1(t(m−i)j + 1)) − 1. The number of
leftmost zero sequence decreases in the child sequence by applying parent-child
relationship. For example, the solution ((0, 0), (2, 1)), for n = 3, m = 2, k = 2
and n1 = 2, n2 = 1, is a node of level 0 because a1 is a zero sequence, a2 is not
a zero sequence. Here, (

∏k

j=1(t(m−i)j + 1)) − 1 = (2 + 1).(1 + 1) − 1 = 5 so it
has 5 children and the five children are ((1,0),(1,1)), ((2,0),(0,1)), ((0,1),(2,0)),
((1,1),(1,0)) and ((2,1),(0,0)) as shown in Figure 3.

((1,0),(1,1))

Level 0

Level 1 ((2,0),(0,1)) ((0,1),(2,0)) ((1,1),(1,0)) ((2,1),(0,0))

((0,0),(2,1))

Fig. 3. The sequence ((0, 0), (2, 1)) has five children.

From the above definitions we can construct the family tree Tn,m,k. We take
the sequence Ar = a1, a2, . . . , am as root where a1, a2, . . . , am−1 are zero se-
quences and am = (n1, n2, . . . , nk) as we mentioned before. The family tree
Tn,m,k for the distributions in D(n, m, k) is shown in Figure 1. Based on the
above parent-child relationship, the following lemma proves that every distribu-
tion in D(n, m, k) is present in Tn,m,k.

Lemma 1. For any distribution A ∈ D(n, m, k), there is a unique sequence of
distributions that transforms A into the root Ar of Tn,m,k.

144 M. A. Adnan and Md. Saidur Rahman

Proof. Let A ∈ D(n, m, k) be a sequence, where A is not the root sequence.
We determine the level of A in the family tree Tn,m,k. Then by applying child-
parent relationship, we find the parent sequence P (A) of A. Now if P (A) is
the root sequence, then we stop. Otherwise, we apply the same procedure to
P (A) and find its parent P (P (A)). By continuously applying this process of
finding the parent sequence of the derived sequence, we have the unique sequence
A, P (A), P (P (A)), . . . of sequences in D(n, m, k) which eventually ends with the
root sequence Ar of Tn,m,k. We observe that P (A) has at least one zero more
than A in its sequence. Thus A, P (A), P (P (A)), . . . never lead to a cycle and
the level of the derived sequence decreases which ends up with the level of root
sequence Ar. Q.E .D.

Lemma 1 ensures that there can be no omission of distributions in the family
tree Tn,m,k. Since there is a unique sequence of operations that transforms a dis-
tribution A ∈ D(n, m, k) into the root Ar of Tn,m,k, by reversing the operations
we can generate that particular distribution, staring from root. We now have
to make sure that the family tree Tn,m,k represents distributions without rep-
etition. Based on the parent-child and child-parent relationships, the following
lemma proves this property of Tn,m,k.

Lemma 2. The family tree Tn,m,k represents distributions in D(n, m, k) without
repetition.

Proof. Given a sequence A ∈ D(n, m, k), the children of A are defined in such a
way that no other sequence in D(n, m, k) can generate same child. Let A, B ∈
D(n, m, k) be two different sequences at level i of Tn,m,k. For a contradiction,
assume that A and B generate the same child C. Then C is a sequence of level
i + 1 of Tn,m,k. The sequences for A, B and C are aj , bj and cj for 1 ≤ j ≤ m.
Clearly, al=bl for 1 ≤ l ≤ m − i − 1 and the parent-child relationship yields
al = bl = cl for m− i+1 ≤ l ≤ m. Therefore al = bl for l 6= m− i and 1 ≤ l ≤ m.
But we have a1 +a2 + · · ·+am = b1 +b2 + · · ·+bm by Equation 1. Then al must
be equal to bl, for 1 ≤ l ≤ m. This implies that A and B are the same sequence,
a contradiction. Hence every sequence has a single and unique parent. Q.E .D.

4 Generating Distributions

In this section, we give an algorithm to construct Tn,m,k and generate all distri-
butions.

One can use the parent-child relationships described in the previous section
to construct the family tree Tn,m,k and hence generate all the distributions in
D(n, m, k) by traversing the tree using the relationships. If we can generate all
child sequences of a given sequence in D(n, m, k), then in a recursive manner we
can construct Tn,m,k and generate all sequence in D(n, m, k). We have the root
sequence Ar = ((0, . . . , 0), (0, . . . , 0), . . ., (0, . . . , 0), (n1, n2, . . . , nk)). We get the
child sequence Ac by using the parent to child relation discussed above.

Distribution of Distinguishable Objects to Bins 145

Procedure Find-All-Child-Distributions(A = ((t11, t12, . . ., t1k), (t21, t22,
. . ., t2k), . . ., (tm1, tm2, . . ., tmk)), i)
{A is the current sequence, i indicates the current level, Ac is the child sequence }
begin

Output A {Output the difference from the previous distribution}
for ik = 0 to t(m−i)k

for ik−1 = 0 to t(m−i)(k−1)

. . .
for i1 = 0 to t(m−i)1

Find-All-Child-Distributions(Ac = ((t11, t12, . . ., t1k), (t21, t22, . . .,
t2k), . . ., (t(m−i−2)1, t(m−i−2)2, . . ., t(m−i−2)k), (i1, i2, . . ., ik), (t(m−i)1 − i1,
t(m−i)2 − i2, . . ., t(m−i)k − ik), . . ., (tm1, tm2, . . ., tmk)), i + 1);
end;
Algorithm Find-All-Distributions(n, m)
begin
Find-All-Child-Distributions(Ar = ((0,. . ., 0), (0,. . ., 0),. . ., (0,. . ., 0), (n1,

n2,. . ., nk)), 0);
end.

Lemma 1 and 2 ensure that Algorithm Find-All-Distributions generates
all distributions without repetition. We now have the following lemma, whose
proof is omitted in this extended abstract.

Lemma 3. The algorithm Find-All-Distributions uses O(mk) space and
runs in O(|D(n, m, k)|) time.

The algorithm Find-All-Distributions generates all sequences in D(n, m, k)
in O(|D(n, m, k)|) time. Thus the algorithm generates each sequence in O(1)
time “on average”. However, after generating a sequence corresponding to the
last vertex in the largest level in a large subtree of Tn,m,k, we have to merely
return from the deep recursive call without outputting any sequence and hence
we cannot generate each sequence in O(1) time (in ordinary sense). To generate
each distribution in O(1) time (in ordinary sense), we introduce two additional
types of relationships:

(i) Relationship between left sibling and right sibling and
(ii) Leaf-ancestor relationship.

(i) Relationship Between Left Sibling and Right Sibling
Let A ∈ D(n, m, k) be a sequence of sequences (a1, a2, . . . , am) which is not

a root sequence, where al represents a sequence of integers tlj for 1 ≤ j ≤ k,
1 ≤ l ≤ m. The sequence A corresponds to a node of level i, 0 ≤ i < m. So, we
have tlj = 0 for 1 ≤ j ≤ k, 1 ≤ l < (m− i) and a(m−i) is a nonzero sequence. We
say the right sibling sequence, As ∈ D(n, m, k) of this node A exists if a(m−i+1)

is a nonzero sequence at level i. Then we call the sequence A left sibling of As.
We define the sequence for As as s1, s2, . . . , sm−i, sm−i+1, . . . , sm, 1 ≤ i < m

where s1, s2, . . ., sm−i−1 are zero sequences and sj = aj for m − i + 2 ≤ j ≤ m
and to find sm−i, sm−i+1 we apply child-parent relationship and then parent-
child relationship. Thus, we observe that As is a node of level i, 1 ≤ i < m

146 M. A. Adnan and Md. Saidur Rahman

and so s1, s2, . . . , sm−i−1 are zero sequences and sm−i is nonzero sequence for
1 ≤ i < m. For example, the solution ((0, 0), (1, 0), (1, 1)), for n = 3, m = 3,
k = 2 and n1 = 2, n2 = 1, is a node of level 1 because a1 is a nonzero sequence.
It has a unique right sibling ((0, 0), (2, 0), (0, 1)) as shown in Figure 4.

Level 1

Level 0

((0,0),(1,0),(1,1))

((1,0),(0,0),(1,1))Level2 ((1,0),(1,0),(0,1)) ((2,0),(0,0),(0,1)) ((0,1),(0,0),(2,0))

((0,0),(0,1),(2,0)) ((0,0),(1,1),(1,0)) ((0,0),(2,1),(0,0))((0,0),(2,0),(0,1))

((0,0),(0,0),(2,1))

Fig. 4. Efficient Traversal of the family tree T3,3,2.

(ii) Leaf-Ancestor Relationship
To avoid returning from deep recursive call without outputting any sequence,

we define leaf-ancestor relationship. After generating the sequence Al of the last
vertex in the largest level i.e. rightmost leaf, we do not return to parent. Instead,
we return to the nearest ancestor Aa which has right sibling. By rightmost leaf we
mean that leaf which has no right sibling. Thus this leaf-ancestor relation saves
many non generation steps. Another reason of defining leaf-ancestor relationship
is that the nearest ancestor can be generated from the leaf sequence by just a
simple swap operation between two inner sequences in the sequence. This is
possible due to the data structure that we use for this case (as described in
the following subsection). For the swap operation we just swap the pointers to
sequences. The other inner sequences remain unchanged.

Let Al ∈ D(n, m, k) be a sequence of sequences (a1, a2, . . . , am) of leaf, where
ap represents a sequence of integers tpj for 1 ≤ j ≤ k, 1 ≤ p ≤ m. The sequence
Al corresponds to a node of level m−1. So, we have a(m−i) is a nonzero sequence.
We say that the ancestor sequence Aa ∈ D(n, m, k) of this node Al exists if a2

is a zero sequence that is it has no right sibling. We define a unique ancestor
sequence of Al at level m − 1 − q where a2, a3, . . . , aq+1 are zero sequence and
aq+2 is a nonzero sequence. This means we want to skip the long sequence of
inner zero sequence in the sequence for Al. The nearest ancestor sequence is
determined by the number of zero sequence in this sequence. We denote the
number of inner zero sequence as q. This q will determine the level and sequence
of the nearest ancestor Aa which has sibling.

We define the sequence for Aa as s1, s2, . . . , sq, sq+1, . . . , sm, where s1, s2, . . .
,sq are zero sequence and sq+1 = a1 and sj = aj for q + 1 < j ≤ m. In other
words, we just swap the sequences a1 and aq+1 in the sequence and the rest of
the inner sequences remain unchanged. For example, in Figure 4 the solution
((2,0),(0,0),(0,1)), for n = 3, m = 3, k = 2 and n1 = 2, n2 = 1, is a node of level
2 because a1 is a nonzero sequence. It has a unique ancestor ((0, 0), (2, 0), (0, 1))
which is obtained by swapping first and second sequences. We have the following

Distribution of Distinguishable Objects to Bins 147

lemma on uniqueness of the nearest ancestor Aa of Al, whose proof is omitted
in this extended abstract.

Lemma 4. Let Al be a leaf sequence of Tn,m,k having no right sibling. Then Al

has a unique ancestor sequence Aa in Tn,m,k. Furthermore, either Aa has a right
sibling in Tn,m,k or Aa is the root Ar of Tn,m,k.

Lemma 4 ensures that Al has a unique ancestor Aa. As we see later Aa

plays an important role in our algorithm. Now we present the algorithm to
generate all distributions in D(n, m, k). We use three relations in this algorithm;
they are parent-child relation, relation between left sibling and right sibling and
leaf-ancestor relation. By applying parent-child relation, we go from root down
the family tree Tn,m,k until we reach leaf at level m − 1. Then we apply the
relationship between left sibling and right sibling to traverse horizontally until
we reach a node which has no right sibling. Then by applying leaf-ancestor
relation, we return to that nearest ancestor which has sibling. Then we again
apply relation between left sibling and right sibling. The sequence of applying
relationships and generating distributions continues until we reach root. This
algorithm thus reduces non-generation steps and generates each sequence in
O(1) time (in ordinary sense).

Procedure Find-All-Child-Distributions2(A = ((t11, t12, . . ., t1k), (t21, t22,
. . ., t2k), . . ., (tm1, tm2, . . ., tmk)) , i)
{ A is the current sequence }
begin

Output A {Output the difference from the previous distribution}
if A has child then

begin
Generate the first child Ac of A;
Find-All-Child-Distributions2(Ac, i + 1);

end
else

if A has right sibling then
begin

Generate right sibling As;
Find-All-Child-Distributions2(As, i);

end
else
begin

Generate the ancestor Aa of A at level i − q such that
either Aa has right sibling or Aa is root;
if Aa is the root at level 0
then done

else
begin

Generate right sibling Aas of Aa;
Find-All-Child-Distributions2(Aas, i − q);

end
end

148 M. A. Adnan and Md. Saidur Rahman

end;
Algorithm Find-All-Distributions2(n, m)
begin
Find-All-Child-Distributions2(Ar = ((0,. . ., 0), (0,. . ., 0), . . ., (0,. . .,0), (n1,

n2,. . ., nk)), 0);
end.

The tree traversal according to the efficient algorithm is depicted in Figure 4.
Now we describe the data structure that we use to represent a distribution in
D(n, m, k) that will help us to generate each distribution in constant time. Note
that, we may need to return to ancestor Aa if current node is a leaf Al and for
a leaf sequence Al we have a1 is a nonzero sequence. Aa is obtained from Al

by swapping a1 and aq+1 where q is the number of consecutive zero sequence
after a1. Now, to find out q we have to search the sequence Al from a1 to aq+1

such that a2, a3, . . . , aq+1 are inner zero sequence and a1, aq+2 are inner nonzero
sequence. We reduce the complexity of searching by keeping extra information
as shown in Figure 5. The information consists of the number of subsequences of
consecutive inner zero sequence and the number of inner zero sequence in each
subsequence after am−i, where i is the current level. For this we keep a stack of
size m/2. The top of the stack determines the current q. Initially the stack is
empty. As soon as we find a zero sequence, when moving from parent to child or
left sibling to right sibling, we push a 1 on the stack. We increment the top of the
stack for consecutive zero sequence. We make a pop operation when we apply
the leaf-ancestor relation. The stack operations are shown in Figure 5. One can
observe that there can be at most m/2 subsequences of consecutive inner zero
sequence in a sequence of size m. Therefore, in worst case we need a stack of
size m/2.

Level 1 ((0,0),(1,0),(1,1))

Level2

((0,0),(0,1),(2,0)) ((0,0),(1,1),(1,0)) ((0,0),(2,1),(0,0))((0,0),(2,0),(0,1))

Level 0 ((0,0),(0,0),(2,1))

((1,0),(0,0),(1,1)) 1

1

2

Fig. 5. Efficient Traversal of T4,3 keeping extra information.

The operations that we use to generate distributions are addition, subtrac-
tion, increment, decrement and swap. The index of the two operands for these
operations are known. So, we might think of keeping an array of integers. Since
for distinguishable objects we deal with sequence of sequences, we may want to
use array of array of integers that means two-dimensional array of integers. But
note that for applying leaf-ancestor relationship we need to swap entire sequence
of integers. By keeping 2D-array of integers it will take O(k) time to swap such
array of integer. This is not efficient. To do swap operation in constant time, we

Distribution of Distinguishable Objects to Bins 149

use a special data structure as shown in Figure 6. We keep an array of pointers
for each bins pointing to an array of integers. The array of integers represents the
inner sequence that is the sequence of different types of objects in a particular
bin. The structure may be viewed as array of objects where each object is an
array of integers in object-oriented sense. Thus by swapping the pointers we will
be able to swap entire array in O(1) time.

t 21 22t t 2k t m1 m2t t mkt 11 12t 1kt

Fig. 6. Illustration of data structure that we use to represent a distribution for distin-
guishable objects.

Using the data structure mentioned above one can efficiently implement the
algorithm Find-All-Distributions2 and hence the following theorem holds.
The detail is omitted.

Theorem 1. The algorithm Find-All-Distributions2 uses O(mk) space and
generates each distribution in D(n, m, k) in constant time (in ordinary sense).

((0,0),(0,0),(2,1))

((2,0),(0,0),(0,1))

((0,0),(0,1),(2,0))

((1,1),(0,0),(1,0))

((0,0),(2,1),(0,0))

((2,1),(0,0),(0,0))

((0,0),(1,0),(1,1))

((1,0),(0,0),(1,1))

((0,0),(2,0),(0,1))

((1,0),(1,0),(0,1))

((0,1),(0,0),(2,0))

((0,0),(1,1),(1,0))

((1,0),(0,1),(1,0))

((0,1),(1,0),(1,0))

((1,0),(1,1),(0,0))

((2,0),(0,1),(0,0))

((0,1),(2,0),(0,0))

((1,1),(1,0),(0,0))

Fig. 7. A Gray code for D(3, 3, 2).

5 Conclusion

In this paper we give a simple elegant algorithm to generate all distributions
in D(n, m, k). The algorithm generates each distribution in constant time with
linear space complexity. We also present an efficient tree traversal algorithm
that generates each solution in O(1) time. Note that each sequence is similar to
the preceding one, since it can be obtained by at most two operations. Thus,
we can regard the derived sequence of the sequences as a combinatorial Gray
code [S97,KN05,R00] for distributions (see Figure 7). Our algorithm can also be

150 M. A. Adnan and Md. Saidur Rahman

extended for the case when the bins have priorities associated with them. In this
case, the bins are numbered in the order of priority. The sequence of generations
will maintain an order such that the bin with highest priority gets highest number
of objects at first and then the priorities of the bins are decreased one by one.
Thus the sequence of generations maintain an order so that the generations
maintain priority. The main feature of our algorithms is that they are constant
time solution which is a very important requirement for generation problems.

References

[AR06] M. A. Adnan and M. S. Rahman, Distribution of objects to bins: generating

all distributions, Proc. of International Conference on Computer and Information
Technology (ICCIT’06), 2006 (to appear).

[AU95] A. V. Aho and J. D. Ullman, Foundation of Computer Science, Computer
Science Press, New York, 1995.

[BS94] M. Belbaraka and I. Stojmenovic, On generating B-trees with constant average

delay and in lexicographic order, Information Processing Letters, 49, pp. 27-32,
1994.

[FL79] T. I. Fenner and G. Loizou, A binary tree representation and related algorithms

for generating integer partitions, The Computer Journal, 23, pp. 332-337, 1979.
[K06] D. E. Knuth, The Art of Computer Programming, Vol.4, url:

http://www.cs.utsa.edu/ wagner/knuth/, 2006.
[K82] P. Klingsberg, A gray code for compositions, Journal of Algorithms, 3, pp. 41-44,

1982.
[KN05] S. Kawano and S. Nakano, Constant time generation of set partition, IEICE

Trans. Fundamentals, E88-A, 4, pp. 930-934, 2005.
[KN06] S. Kawano and S. Nakano, Generating Multiset Partitions, (on private com-

munication), 2006.
[NU03] S. Nakano and T. Uno, Efficient generation of rooted trees, NII Technical

Report, NII-2003-005E, July 2003.
[NU04] S. Nakano and T. Uno, Constant time generation of trees with specified diam-

eter, Proc. of WG 2004, LNCS 3353, pp. 33-45, 2004.
[NU05] S. Nakano and T. Uno, Generating colored trees, Proc. of WG 2005, LNCS

3787, pp. 249-260, 2005.
[R00] K. H. Rosen, Discrete Mathematics and Its Applications, WCB/McGraw-Hill,

Singapore, 2000.
[S97] C. Savage, A survey of combinatorial gray codes, SIAM Review, 39, pp. 605-629,

1997.
[T02] A. S. Tanenbaum, Computer Networks, Prentice Hall, Upper Saddle River, NJ,

2002.
[T04] A. S. Tanenbaum, Modern Operating Systems, Prentice Hall, Upper Saddle

River, NJ, 2004.
[YN04] K. Yamanaka and S. Nakano, Generating all realizers, IEICE Trans. Inf. and

Syst., J87-DI, 12, pp. 1043-1050, 2004.
[ZS98] A. Zoghbi and I. Stojmenovic, Fast algorithm for generating integer partitions,

International Journal of Computer Mathematics, 70, pp. 319-332, 1998.

