
An Approximation Algorithm for Sorting by

Reversals and Transpositions

Atif Rahman, Swakkhar Shatabda and Masud Hasan

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka-1000, Bangladesh
atif.bd@gmail.com, swakkhar17@yahoo.com, masudhasan@cse.buet.ac.bd

Abstract. Genome rearrangement algorithms are powerful tools to an-
alyze gene orders in molecular evolution. Analysis of genomes evolving
by reversals and transpositions leads to a combinatorial problem of sort-
ing by reversals and transpositions, the problem of finding a shortest
sequence of reversals and transpositions that sorts one genome into the
other. In this paper we present a (4 − 2

k
)-approximation algorithm for

sorting by reversals and transpositions for unsigned permutations where
k is the approximation ratio of the algorithm used for cycle decompo-
sition. For the best known value of k our approximation ratio becomes
2.5909 + δ for any δ > 0. We also derive a lower bound on reversal and
transposition distance of an unsigned permutation.

1 Introduction

The study of evolutionary distance between two organisms using genomic data
requires reconstruction of the sequence of evolutionary events that transform one
genome into the other. Sequence comparison in computational molecular biology
is a powerful tool for deriving evolutional and fundamental relationships among
genes. But classical alignment algorithms take into account only local muta-
tions (insertions, deletions and substitutions of nucleotides) and ignore global
rearrangements (reversals, transpositions, translocations, fusions, fissions, etc.
of long fragments) [1]. While studying genomes of different species, evidence was
found that different species have essentially the same set of genes, but their or-
der may differ among species [16, 20]. This suggests that global rearrangement
events can be used to trace the evolutionary path among genomes.

In genome rearrangement problems the order of genes in two arbitrary organ-
isms is represented by permutations. The basic task is, given two permutations,
to find a shortest sequence of rearrangement operations that transforms one per-
mutation into the other. Assuming that one of the permutations is the identity
permutation, the problem is to find the shortest way of sorting a permutation
using a given rearrangement operation (or set of operations). Two of the most

M. Kaykobad and Md. Saidur Rahman (Eds.): WALCOM 2007, pp. 97–108, 2007.

98 A. Rahman, S. Shatabda and M. Hasan

studied operations are reversal and transposition. A reversal reverses the order
of the elements in a segment. In signed version of the problem each element has
a sign and a reversal not only reverses the order of the elements in a segment
but also flips their signs. A transposition is a rearrangement operation in which
a segment is cut out of the permutation and pasted in a different location.

The problem of sorting by reversals has been studied extensively. For the
signed version, Kececioglu and Sankoff [17] conjectured that the problem is NP-
hard and gave a 2-approximation algorithm by exploiting the link between re-
versal distance and the number of breakpoints. Bafna and Pevzner [1] improved
the ratio to 1.5 by introducing the breakpoint graph. Finally, Hannenhalli and
Pevzner [13] settled the conjecture negative by giving an exact polynomial algo-
rithm.

The unsigned version of the problem was shown to be NP-hard by Caprara
[5]. Before that when the complexity was unknown, Kececioglu and Sankoff [17]
gave a 2-approximation algorithm for the problem, and Bafna and Pevzner [1]
presented a 1.75-approximation algorithm. Later the performance ratio was im-
proved to 1.5 by Christie [7] and to 1.375 by Berman, Hannenhalli and Karpin-
ski [3].

The problem of sorting by transpositions has also been studied by several
authors. But unlike sorting by reversal, the complexity of sorting by transposi-
tions is still open. It was first studied by Bafna and Pevzner [2], who devised a
1.5-approximation algorithm. The algorithm was simplified by Christie [8] and
further by Hartman [14]. Recently, Elias and Hartman [9] gave a 1.375 approxi-
mation algorithm. Eriksson et al. [11] considered the problem in a different way.
When the permutation size is n, they gave an algorithm that sorts the permu-
tation by at most 2n/3 transpositions, but their algorithm does not give any
approximation guarantee.

A number of suggestions have been made to consider algorithms for sort-
ing permutations by using more than one rearrangement operations (reversals,
transpositions, etc.). Walter, Dias and Meidanis [21] provided a 2-approximation
algorithm for signed permutation for sorting by reversals and transpositions. Gu
et al. [12] gave a 2-approximation algorithm for sorting signed permutations by
transpositions and transreversals (a transreversal combines a transposition and
a reversal). Lin and Xue [19] improved this ratio to 1.75 by considering a third
operation, called “revrev”, which reverses two contiguous segments. Hartman
and Sharan [15] further improved it to 1.5.

Blanchette, Kunisawa, and Sankoff [4] worked on a variation of the prob-
lem and developed a computer program Derange II built on a greedy algorithm
which attempts to minimize the weighted sum of the number of operations. Erik-
sen [10] provided a (1+ǫ)-approximation algorithm for sorting signed, circular
permutations where reversals are weighted 1 and transpositions and inverted
transpositions (transreversals) are weighted 2.

There has been less progress in the problem of sorting permutations by using
more than one rearrangement operations for unsigned permutations. Walter,
Dias and Meidanis [21] gave a 3-approximation algorithm for sorting by reversals

An Approximation Algorithm for Sorting 99

and transpositions for unsigned permutations. Our main result in this paper is
to improve this ratio.

Biologists derive gene orders either by sequencing entire genomes or by com-
parative physical mapping. Physical maps usually do not provide information
about directions of genes and so lead to representation of a genome as an un-
signed permutation. Most of currently available data on gene orders are based
on comparative physical maps [3]. So, an algorithm for sorting unsigned permu-
tation by reversals and transpositions is quite useful.

In this paper we present an algorithm for sorting by reversals and trans-
positions for unsigned permutations with an approximation ratio 4 − 2

k
, where

k is the approximation ratio of the cycle decomposition algorithm used. The
problem of cycle decomposition of a graph G is to decompose the edges of G
into maximum number of edge-disjoint cycles and this problem is known to be
NP-hard [5]. Using the best known approximation ratio for this problem, which
is by Lin and Jiang [18], our algorithm has an approximation ratio 2.5909 + δ
for any δ > 0.

In course of our algorithm we also give a lower bound on reversal and trans-
position distance of an unsigned permutation.

The rest of the paper is organized as follows. In section 2 we give the relevant
definitions and derive a lower bound on reversal and transposition distance. In
section 3 we present the approximation algorithm and derive the approximation
ratio. We conclude by suggesting some future directions in section 4.

2 Preliminaries

Here, several of our definitions and lemmas have similarities with those in [1].

2.1 Sorting by Reversals and Transpositions

Let π = [π0π1 π2 . . . πnπn+1] be a permutation of n+2 distinct elements where
π0 = 0, πn+1 = n+1, and 1 ≤ πi ≤ n for each 1 ≤ i ≤ n (the middle n elements of
π are to be sorted). A reversal ρ = ρ(i, j) for some 1 ≤ i < j ≤ n+1 applied to π
reverses the elements πi . . . πj−1 and thus transforms π into permutation π ·ρ =
[π0 . . . πi−1 πj−1 . . . πi πj . . . πn+1]. A transposition τ = τ(i, j, k) for some
1 ≤ i < j ≤ n + 1 and some 1 ≤ k ≤ n + 1 such that k /∈ [i, j] cuts the elements
πi . . . πj−1 and pastes between πk−1 and πk and thus transforms π into permu-
tation π · τ = [π0 . . . πi−1 πj . . . πk−1 πi πi+1 . . . πj−1 πk . . . πn+1] if k > j or
into permutation π · τ = [π0 . . . πk−1 πi πi+1 . . . πj−1 πk . . . πi−1 πj . . . πn+1]
if k < i.

An identity permutation I is a permutation such that πi = i for 0 ≤ i ≤
n + 1. The reversal and transposition distance d(π) between π and I is the
minimum number of operations such that π · o1 · o2 · . . . · od(π) = I, where
each operation oi is a reversal ρ or a transposition τ . The problem of sorting
by reversals and transpositions is to find a shortest sequence of reversals and
transpositions that transforms a permutation π into the identity permeation

100 A. Rahman, S. Shatabda and M. Hasan

I, i.e. finding the distance d(π). It is worth mentioning that the motivation
of sorting by reversals and transpositions is not to sort but to find a shortest
sequence of sorting operations.

2.2 Breakpoints and Cycle Decomposition Graph

Two elements πi and πi+1 of π for all 0 ≤ i ≤ n are called adjacent if |πi−πi+1| =
1. Otherwise there is said to be a breakpoint between the two elements. We denote
the total number of breakpoints in π by b(π).

The cycle decomposition graph G(π) is an undirected multigraph whose n+2
vertices are πi for 0 ≤ i ≤ n + 1. G(π) has 2(n + 1) edges and they are of two
types: gray and black. For each 0 ≤ i ≤ n, the vertices πi and πi+1 are joined
by a black edge. For 0 ≤ i, j ≤ n + 1, there is a gray edge between πi and πj iff
πi = πj + 1.

(d)

(a)

0 2 6 5 1 4 7 3 8

(b)

(c)

2 6 5 1 4 70 3 8

1 2 6 5 4 30 7 8

1 2 6 5 4 70 3 8

Fig. 1. (a) A permutation π, (b) Cycle decomposition graph G(π) of π, (c) A trans-
position τ (4, 5, 1) on G(π), (d) A reversal ρ(6, 8) on G(π · τ)

For convenience of illustration, in this paper the vertices of G(π) are drawn
horizontally in order π0, π1, . . . , πn+1 from left to right. The black edges are

An Approximation Algorithm for Sorting 101

usually shown by horizontal lines and the gray ones are shown by dotted arcs.
See Fig. 1. We also use broken arcs to show chords having a single gray edge
or an odd number of edges of alternating colors starting and ending with gray
edges.

An alternating cycle of G(π) is a cycle of size at least two in which the edges
alternate colors. From now on we will use cycle to refer to an alternating cycle
and l-cycle to refer to a cycle having l black edges.

The graph G(π) can be completely decomposed into edge-disjoint cycles [7,
6, 18]. However, there may be many different such cycle decompositions. The
maximum number of cycles in any cycle decomposition of G(π) is denoted by
c(π). As already mentioned in Section 1, the problem of finding a maximum
cycle decomposition is known to be NP-hard [5]. Among several approximation
algorithms, Christie [7] gave a 1.5-approximation algorithm, Caprara and Rizzi
[6] improved the ratio to 1.4348 + ǫ for any ǫ > 0, and, as the best one so far,
Lin and Jiang [18] further improved it to 1.4193 + ǫ for any ǫ > 0.

2.3 A Lower Bound on Reversal and Transposition Distance

Consider a permutation π. The 2(n + 1) edges of G(π) can give at most (n + 1)
cycles. We have the following crucial lemma whose obvious proof we omit.

Lemma 1. G(π) has n + 1 cycles iff π = I.

For a permutation π and an operation o, denote △c(o) = c(π · o) − c(π) as
the change in the number of cycles due to operation o. We use m-transposition
to refer to a transposition τ such that △c(τ) = m, and m-reversal to denote a
reversal ρ with △c(ρ) = m.

Lemma 2. △c(τ) ≤ 2.

Proof. A transposition τ(i, j, k) involves six vertices of G(π) (πi−1, πi, πj−1, πj ,
πk−1, πk). It removes three black edges ((πi, πi−1), (πj , πj−1) and (πk, πk−1))
and adds three new black edges ((πj , πi−1), (πi, πk−1) and (πk, πj−1)), and all
other edges are unaffected.

Three removed edges belong to either one, two or three cycles in a cycle
decomposition of G(π). Again, the added edges belong to either one, two or
three cycles in a cycle decomposition of G(π · τ). In the case when the removed
edges belong to one cycle and the added edges belong to three cycles the number
of cycles increases by two and in all other cases it is less than two. Q.E .D.

We have a similar lemma for reversals.

Lemma 3. △c(ρ) ≤ 1.

According to Lemma 1 the sequence of operations that sort a non-identity
permutation π must increase the number of cycles from c(π) to n+1. Since from
Lemma 2 and Lemma 3 the maximum increase due to a single operation is two,
a lower bound on d(π) follows.

102 A. Rahman, S. Shatabda and M. Hasan

Theorem 1. d(π) ≥ n+1−c(π)
2 .

The lower bound can also be expressed in terms of breakpoints.

Lemma 4. There exists a maximum cycle decomposition of G(π) that contains
every 1-cycle in the graph.

Proof. Let C denote a maximum cycle decomposition of G(π) that does not
contain a 1-cycle on vertices πi and πi+1. The gray and black edges connecting
πi and πi+1 must belong to one or two cycles having at least two black edges in
C. The gray edge between πi and πi+1 is preceded and succeeded by two black
edges in the cycle containing the gray edge in C and, similarly, the black edge is
preceded and succeeded by two gray edges.

We can construct a cycle decomposition C′ from C by removing the gray
and black edge connecting πi and πi+1 to form a 1-cycle and merging the chords
remaining after removal of the edges to form another cycle. The number of cycles
in C′ is no less than the number of cycles in C and so C′ is a maximum cycle
decomposition of G(π). Q.E .D.

Let c1(π) denote the number of 1-cycles and c2+(π) denote the number of cy-
cles having two or more black edges in a maximum cycle decomposition of G(π)
containing every 1-cycle. An alternative lower bound on reversal and transposi-
tion distance is given by the following theorem.

Theorem 2. d(π) ≥
b(π)−c

2+
(π)

2 .

Proof. According to Theorem 1, d(π) ≥ n+1−c(π)
2 . The total number of cycles

c(π) can be written as the sum of c1(π) and c2+(π). So, d(π) ≥
n+1−c1(π)−c

2+
(π)

2 .
But the number of 1-cycles in G(π) equals the number of adjacencies in π, and

so n + 1 − c1(π) = b(π). Hence, d(π) ≥
b(π)−c

2+
(π)

2 . Q.E .D.

3 Approximation Algorithm

The approximation algorithm sorts a permutation π by first constructing the
cycle decomposition graph G(π). The next step is to partition the edges of G(π)
into cycles. To do this first all 1-cycles are identified and their edges are removed.
Next the remaining edges are partitioned into cycles having two or more black
edges using the approximation algorithm of Lin and Jiang [18]. Let c′(π) denote
the total number of cycles produced in the cycle decomposition step. In each
iteration our algorithm attempts to increase c′(π) by applying a reversal or a
transposition until G(π) contains n+1 cycles (including the 1-cycles whose edges
have been deleted.) If there exists no such operation then the algorithm applies
a transposition that will allow a transposition in the next iteration to increase
c′(π) by two. The algorithm thus sorts a permutation π in at most n + 1− c′(π)
iterations. Following is how the algorithm operates.

An Approximation Algorithm for Sorting 103

We number the black edges of G(π) from 1 to n + 1 by assigning label i to
a black edge joining πi−1 and πi. We say that a reversal ρ(i, j) acts on edges i
and j and a transposition τ(i, j, k) acts on edges i, j and k.

At any time we express an l-cycle C as the ordering (i1, . . . , il) of its black
edges along its boundary such that i1 is the black edge with highest number and
is traversed from right to left. We distinguish three different kinds of cycles: semi-
oriented, oriented and non-oriented. (The concept of oriented and non-oriented
cycles was introduced by Bafna and Pevzner [2] for directed cycle decomposition
graphs.) A cycle C is semi-oriented if there exist two black edges such that along
the boundary of C one is traversed left to right and the other one is traversed
right to left (Fig. 2(a)); C is non-oriented if its black edges are in decreasing
sequence (Fig. 2(b)); otherwise C is an oriented cycle (Fig. 2(c)). A gray edge
in a cycle C is directed left if it is traversed from right to left in C and right
otherwise. Observe that a non-oriented cycle C = (i1, . . . , il) has exactly one
right edge between black edges il and i1 and an oriented cycle has at least three
black edges (for two black edges it becomes non-oriented).

(a) (c)(b)

i2 i3 i1i1i2i3

Fig. 2. (a) A semi-oriented, (b) a non-oriented, and (c) an oriented cycle.

Lemma 5. If C is an oriented cycle, then there exists a 2-transposition acting
on C.

Proof. Let C = (i1, . . . , il) be an oriented cycle. We find an index 3 ≤ t ≤ l such
that it > it−1 and apply a transposition τ(it−1, it, i1) on C creating a 1-cycle
(on vertices πit−1−1 and πit

) and some other cycles (Fig. 3). Therefore, τ is a
2-transposition. Q.E .D.

Lemma 6. If G(π) has only non-oriented cycles, then there exists a 0-transposition
τ that creates an oriented cycle in G(π · τ).

Proof. Let C = (i1, . . . , il) be a non-oriented cycle. Let p be the position of the
maximum element of π in between [i2 − 1, i1]. Note that p must exist because
otherwise there would be a black edge between vertices πi1−1 and πi2 and the
gray edge between the vertices would then be part of a 1-cycle. Let s be a position
of πp + 1 in π. (We choose the cycle C in such a way that s > i1.) If the gray
edge between πp and πs is a right edge, we consider a transposition τ(p+1, s, i2)

104 A. Rahman, S. Shatabda and M. Hasan

i1it−1 it

Fig. 3. A 2-transposition acting on an oriented cycle.

(Fig. 4(a)). Otherwise, we consider a transposition τ(p, i1, s + 1) (Fig. 4(b)). In
both cases the edges removed by τ belong to two different cycles and the edges
added belong to a 1-cycle and another cycle C′ in G(π · τ). Therefore, τ is a
0-transposition. Again, in both cases C′ contains two right edges, and therefore,
C′ is an oriented cycle.

Q.E .D.

(b)

(a)

C′

p s

s p

C′

p si1i2

p si2 i1

Fig. 4. A 0-transposition on a non-oriented cycle.

Lemma 7. If C is a semi-oriented cycle, then there exists a 1-reversal acting
on C.

Proof. Consider a semi-oriented cycle C = (i1, . . . , il). Let t (1 ≤ t ≤ l) be an
index such that the edges it−1 (if t = 1 then t − 1 = l) and it are traversed in

An Approximation Algorithm for Sorting 105

opposite directions. We consider a reversal ρ on edges it−1 and it (Fig. 5). The
removed edges belong to same cycle and the edges added belong to a 1-cycle and
another cycle C′ in G(π · ρ). Therefore, ρ is a 1-reversal. Q.E .D.

(a)

C′

C′

(b)

Fig. 5. A 1-reversal acting on a semi-oriented cycle.

Lemmas 5, 6 and 7 imply the following corollary and the Algorithm RTSort
summarizes our approximation algorithm. It is easy to verify that RTSort runs
in polynomial time.

Corollary 1. Any permutation π can be sorted in n + 1 − c′(π) operations.

3.1 Approximation Ratio

In section 2 we established the following lower bound,

d(π) ≥
n + 1 − c(π)

2
.

From Corollary 1, our algorithm sorts a permutation in at most n+1− c′(π)
steps. So we get an approximation ratio,

r =
2(n + 1 − c′(π))

n + 1 − c(π)
,

where the value of c′(π) depends on the algorithm used for cycle decomposition.
Remember that G(π) has b(π) black edges that are not elements of 1-cycles.

If a maximum cycle decomposition of G(π) contains c2+(π) cycles with two or

106 A. Rahman, S. Shatabda and M. Hasan

Algorithm 1 RTSort(π)

Construct undirected cycle decomposition graph G(π) of π
Identify all 1-cycles and remove their edges
Decompose G(π) into edge disjoint cycles (by [18])
while G(π) does not have n + 1 cycles do

if G(π) has an oriented cycle then

Apply a 2-transposition (Lemma 5)
else if G(π) has a semi-oriented cycle then

Apply a 1-reversal (Lemma 7)
else

Apply a 0–transposition (Lemma 6)
end if

G(π)← G(π · o)
end while

more black edges, then an algorithm with approximation ratio k on G(π) will

decompose b(π) black edges into at least
c
2+

(π)

k
l-cycles with l ≥ 2. So,

r ≤
2(n + 1− c1(π)− c2+ (π)/k)

n + 1− c1(π)− c2+ (π)

=
2b(π)− 2c2+ (π)/k

b(π)− c2+ (π)

=
2b(π)− 2c2+ (π) + (2− 2/k)c2+ (π)

b(π)− c2+(π)

= 2 +
(2− 2/k)c2+ (π)

b(π)− c2+ (π)
.

The second term on the right hand side decreases with increase of b(π). But
each of the c2+(π) cycles contains at least two black edges. So, b(π) ≥ 2c2+(π).
Therefore,

r ≤ 2 +
(2− 2/k)c

2+ (π)

2c
2+ (π)− c

2+(π)

= 2 + (2−
2

k
)

= 4− (
2

k
).

Putting k = 1.4193 + ǫ, where ǫ > 0, from [18] in the above equation, we get

r ≤ 4−
2

1.4193 + ǫ

= 4−
2 + 2ǫ/1.4193 − 2ǫ/1.4193

1.4193 + ǫ

= 4−
2(1 + ǫ/1.4193)

1.4193(1 + ǫ/1.4193)
+

2ǫ

1.4193(1.4193 + ǫ)

= 4−
2

1.4193
+ δ

= 2.5909 + δ.

An Approximation Algorithm for Sorting 107

The algorithm thus has an approximation ratio 2.5909 + δ for any δ > 0.

Theorem 3. The algorithm RTSort is a (4 − 2
k
)-approximation algorithm for

sorting by reversal and transposition for unsigned permutation, where k is the
approximation ratio for the cycle decomposition of a graph. With the best known
value of k = 1.4193 + ǫ, where ǫ > 0 [18], our algorithm gives the approximation
ratio of 2.5909 + δ, for any δ > 0.

4 Conclusion

In this paper we presented a (4− 2
k
)-approximation algorithm for sorting unsigned

permutations by reversals and transpositions where k is the approximation ratio
of cycle decomposition algorithm used. As cycle decomposition approaches op-
timality the approximation ratio of our algorithm approaches two. In future the
performance ratio may be improved and other rearrangement operations such as
translocation, fission, fusion may be considered. The ultimate goal would be to
combine merits of both sequence alignment and genome rearrangement in a sin-
gle algorithm. In a variation of the problem each rearrangement operation could
be weighted according to the likelihood of the operation in molecular evolution.
The goal would be to find a sequence of sorting operations such that the total
cost is minimized.

References

1. V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. Proc.
of 34th IEEE FOCS, pages 148–157, 1993. Also in SIAM Journal on Computing
25:272-289,1996.

2. V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM Journal on Discrete
Mathematics, 11(2):224–240, May 1998.

3. P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for
sorting by reversals. Proc. of 10th European Symposium on Algorithms (ESA’02),
2461:200–210, 2002.

4. M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement.
Gene, 172:GC11–17, 1996.

5. A. Caprara. Sorting by reversals is difficult. Proc. of 1st ACM RECOMB, pages
75–83, 1997.

6. A. Caprara and R. Rizzi. Improved approximation for breakpoint graph decompo-
sition and sorting by reversals. Journal of Combinatorial Optimization, 6(2):157–
182, 2002.

7. D.A. Christie. A 3/2 approximation algorithm for sorting by reversals. Proc. of
9th ACM-SIAM SODA, pages 244–252, 1998.

8. D.A. Christie. Genome Rearrangement Problems. PhD thesis, University of Glas-
gow, 1999.

9. I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpo-
sition. Proc. of the 5th International Workshop on Algorithms in Bioinformatics
(WABI’05), 3692:204–214, October 2005.

108 A. Rahman, S. Shatabda and M. Hasan

10. N. Eriksen. (1+ǫ)-approximation of sorting by reversals and transpositions. The-
oretical Computer Science, 289(1):517–529, 2002.

11. H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. Wastlund. Sorting a
bridge hand. Discrete Mathematics, 241(1-3):289–300, 2001.

12. Q.P. Gu, S. Peng, and H. Sudborough. A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theoretical Computer Science,
210(2):327–339, 1999.

13. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip. Proc. of 27th
ACM STOC, pages 178–189, 1995.

14. T. Hartman. A simpler 1.5-approximation algorithm for sorting by transpositions.
Combinatorial Pattern Matching (CPM ’03), 2676:156–169, 2003.

15. T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by trans-
positions and transreversals. Proc. 4th Workshop on Algorithms in Bioinformatics
(WABI’04), 2004.

16. S.B. Hoot and J.D. Palmer. Structural rearrangements, including parallel inver-
sions, within the chloroplast genome of anemone and related genera. Journal of
Molecular Evolution, 38:274–281, 1994.

17. J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the inversion
distance between two permutations. Combinatorial Pattern Matching, Proc. 4th
Annual Symposium (CPM’93), 684:87–105, 1993. Extended version has appeared
in Algorithmica, 13:180-210, 1995.

18. G. Lin and T. Jiang. A further improved approximation algorithm for breakpoint
graph decomposition. Journal of Combinatorial Optimization, 8(2):183–194, 2004.

19. G.H. Lin and G. Xue. Signed genome rearrangements by reversals and transposi-
tions: Models and approximations. Proc. COCOON ’99, 1627:71–80, 1999.

20. J.D. Palmer and L.A. Herbon. Tricircular mitochondrial genomes of brassica and
raphanus: reversal of repeat configurations by inversion. Nucleic Acids Approach,
14:9755–9764, 1986.

21. M.E. Walter, Z. Dias, and J. Meidanis. Reversal and transposition distance of linear
chromosomes. String Processing and Information Retrieval: A South American
Symposium (SPIRE 98), pages 96–102, 1998.

