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Abstract. DiskTrie is an efficient external-memory data structure for
storing strings in mobile devices using flash memory. It supports Lookup

and Prefix-Matching operations with a constant internal memory and
linear processing requirements. The number of disk accesses it takes to
search for a string among n unique finite strings is bounded by Θ(log∗ n),
while for a prefix-matching operation it takes Θ(log∗ n) + O( n

B
) disk

accesses, where B is the size of one page in the flash memory.

1 Introduction

In recent years, there has been a large influx of technological gadgets into peo-
ple’s life due to the revolution in the mobile communication sector. Hand-held
devices have become an essential part of everyday life with a lot of applica-
tions being developed for this platform and the complexity of the programs are
also increasing rapidly. Moreover, technological advances in embedded systems
and advanced research works in different sensor networks are also dependent on
small-scale devices. As a result, low complexity algorithms and data structures,
with small memory requirements, have become extremely important.

A very common problem addressed in computer literature is the storing of
large amount of text and searching or retrieving them efficiently. Because of its
multifarious applications, from searching substrings in a book or dictionary to
large DNA sequence mapping or matching, it has got a lot of attention over the
years. In Stringology, there are a lot of internal memory algorithms and data
structures already available that efficiently address this problem; for example
- binary search tree, hash, trie etc [7, 10, 20] to name some simple ones and
Patricia trie [14, 18], suffix tree [17], suffix array [16], suffix cactus [12] etc. are
more advanced ones. But when data get too large to fit in main memory, the
question of using external memory algorithms arises. These data are kept in
external storage systems and frequently accessed by the algorithm to perform
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desired operations. In that case, the main focus turns to number of disk accesses,
as it is the costliest of operations. Vitter has surveyed on many such external
memory implementations and discussed the findings in [22, 23]. Many of the
internal memory data structures have also been extended to external memory
as described in [3, 6, 13]. There are also some extremely efficient data structures
for external memory like String B-tree [9], Hierarchy of indexes [13] etc. The
performance of these data structures and accompanying algorithms have been
extensively tested for external storage systems.

But this very common and well-addressed problem of Stringology is not so
well discussed in case of mobile devices with very small internal memory and
processing power. Because of its very small amount of internal memory it cannot
cope with the amount of data that can easily be handled in a modern computer
and hence it has to take help of external memory in most cases. On the other
hand, in most of the recent hand-held devices flash memory is used as external
memory and because of its cheap price and increasing size it is also gaining
popularity even among computer systems. In recent years there has been some
works on flash memory specific file systems [4, 21] and improvements over them
[5]. Also, some conventional external memory data structures and algorithms e.g.
B-tree, R-tree have been modified for this type of memory systems [24, 25] and
different indexing data structures have been proposed for flash-based systems
[15]. Nevertheless, a study of Gal and Toledo [11] in 2005 shows that, flash-aware
data structures are still very rare and algorithms to exploit its characteristics
are in their incipient phases.

In this paper a mobile-specific modification and flash-specific implementation
of a static trie data structure is proposed. The idea is to create the trie in a com-
puter, store the pre-built trie in the flash memory maintaining a particular order
along with the actual strings and to retrieve the nodes of the trie from the flash
to traverse in the required portion of the data structure. A path-compressed and
level-compressed binary trie (LPC trie) as described by Nilsson and Tikkanen
[19] is used because of its ease of implementation as a binary tree and expected
average depth of Θ(log∗ n) [1] while containing n independent random strings
from a distribution with density function f ∈ L2 over Θ(log n) [8] by normal
trie. The function log∗ n is the iterated logarithm function, which is defined as
follows. log∗ 1 = 0. For any n > 1, log∗ n = 1 + log∗(⌈log n⌉).

2 Preliminaries

2.1 Characteristics of Flash Memories

Flash memory is a type of EEPROM (Electronically Erasable Programmable
Read-Only Memory). It is non-volatile and, as a result, is used for storing
data permanently in hand-held devices and mobile phones. It has a unique
read/write/erase behavior than other programmable memories and can be writ-
ten a limited number of times, ranging from 10,000 to 1,000,000, after which it
wears out and becomes unusable. It comes in two flavors - NAND and NOR. In
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both types, write operations can only clear bits and the only way to set bits is
to erase entire region of memory.

NOR Flash Memory. NOR flash is the older of the two types and provides
random access. It can be addressed at byte level from CPU and can be used as
RAM, if needed. It is very slow to write and hence, normally used as storage
for static data. This property of addressing at byte level makes it suitable for
storing the nodes of the trie.

NAND Flash Memory. NAND is the recent addition to the family, and it
works much like the block devices such as hard disks. It is normally partitioned
and used as file systems. Normally, NAND flashes are divided into blocks that
work as erase units and each block consists of several pages. Read/write opera-
tions are handled per page and hence, while considering NAND flashes for the
proposed data structure the only concern is the page size. Typical page size of
NAND flash is 512 bytes; where block size is about 16K bytes.

2.2 Trie Data Structure

In its original form the trie [10] is a data structure where a set of strings from an
alphabet containing m characters is stored in an m-ary tree and each string is
represented by a unique path from the root to a leaf node. A search is performed
in the following way: The root uses the first character to choose a node and then
that node uses the next character, and so on. An example is shown in Fig.1(a).
In this paper binary encoding is used and thus the m-ary tree is converted to
a binary one (Fig.1(b)). This binary encoding simplifies the structure in two
ways. First, every internal node now has the same degree, which is two. Second,
no space is needed to remember the character corresponding to an outgoing
edge. The obvious problem of using binary encoding is that each string will
become longer and as a result search will take longer time. The solution is path

compression as shown in Fig.1(c). A path compressed binary trie is a trie where
all sub-tries with an empty child have been removed.

Patricia Trie. The result of path compression can be further optimized by a
structure known as Patricia trie [18]. In this case, at each internal node only two
values are remembered. One is the first character of the compressed string and
the other is called Skip value- number of bits that are same in the edge toward
the descending subtrie. As binary encoding is used, remembering the first bit
is also redundant. It is also observed that the size of the Patricia trie is not
dependent on the length of the strings, rather it depends on the total number of
strings. A Patricia trie storing n strings has exactly 2n − 1 nodes. The Patricia
trie form of the compressed trie of Fig.1(c) is shown in Fig.1(d).
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Fig. 1. Eight strings AA,AG,AT,GA,TGT,TGC,TC,C stored in (a) a trie: (b) a binary
trie: (c) a trie after path compression: (d) a Patricia trie: (e) a LPC trie:
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Level Compression. Level Compression [1] can further reduce the size of the
Patricia trie. In this case, if i highest levels of the trie are complete and (i + 1)
is not, then i highest levels are replaced by a single node of degree 2i. And this
procedure is repeated in a top-down manner until total trie is level compressed.
The resulting trie is known as LPC trie. Figure 1(e) presents the final state of
the trie from Fig.1(a) after path and level compression. It results in an expected
average depth of Θ(log∗ n). This exceedingly reduced depth will play a significant
role in the proposed implementation for flash memories. It is shown in [1] that
the degree of a node can be at most 2⌈log n⌉, where n is the number of elements.

A detailed example of these compression techniques of trie is provided by An-
dersson and Nilsson in [2].

3 DiskTrie Implementation

In this section, the proposed data structure DiskTrie is described in details. It is
an external memory implementation of an LPC trie taking advantage of random

access provided by NOR flash memory for storing the nodes of the trie and using
NAND flash memory for storing the actual strings. Along with the use of NOR
flash for storing trie nodes, a NAND flash storage structure of trie nodes is also
described. The implementation is discussed in detail by dividing the total process
into three distinct phases, namely- Creation and Placement in Flash Memory
and Retrieval.

3.1 Creation and Placement in Flash Memory

As DiskTrie is a static implementation, its content will not change during the
operation of the data structure and as a result, it can be pre-built in a computer
and then transfered to the flash memory afterward. This results in a two-pass
algorithm.

– In the first pass, the data structure is built in RAM based upon the basic
construction algorithms suggested in [1] and [2] with certain changes in the
node structure for placing it in external storage. Another important part in
this phase is the in-memory lexicographical sorting of all the unique strings
stored in the DiskTrie. After sorting, all the strings are placed in NAND
flash sequentially delimited by a specific separator symbol and the pointers
are stored alongside the strings. This separator or end-marker also ensures
that no string is a prefix of another one, which means that in every case only
leaf nodes will contain pointer to the actual string residing in the disk.

– In the second pass, the necessary updates of pointers are done in the in-
memory representation of the DiskTrie and the nodes of it are placed in the
flash memory.

As in [2], the fields in each node are bits, Skip and pointer. The number
bits indicates the number of bits used for branching at each node. A value of
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bits ≥ 1 means the node has 2bits child nodes and bits = 0 indicates that it is a
leaf node. Skip is the Patricia skip value and pointer refers to the pointer to the
text for a leaf node and pointer to the left-most child for an internal node. While
placing these nodes into the secondary storage the pointer values are changed by
actual addresses in the flash. Another important characteristic followed in case
of NAND flash is that page boundaries are always maintained i.e. every single
node is contained totally within a single page resulting in a certain amount of
wastage in each page. As there is only one pointer to the left-most child of an
internal node, all the child nodes of an internal node are also placed in sequence.
This type of representation is suitable for both NAND and NOR type of flash.

3.2 Retrieval

The retrieval process deals with two types of operations on the data structure -
lookup and prefix-matching in separate ways. These are discussed in the follow-
ing.

Lookup. The Lookup algorithm presented in Fig.2 is almost similar to the one
in [1], but extended to include the Patricia Skip value and the necessary access to
flash memory. Here getFromFlashDrive(address) procedure takes the physical
address and returns the node. The boundary maintaining property included in
the previous section comes handy in case of NAND memory to prevent multiple
access to retrieve a single trie node. getValue(S, k, m) procedure takes the
zero-indexed binary string, S and returns the integer that starts at the kth index
and stretches up to m bits. And calcAddress(n, p) takes the offset of the child
n and pointer to the first child and returns the actual physical address of the
node. Finally, stringCompare(S, rS) compares the binary string S with the
stored string rS and reports a boolean answer. This comparison at the end
is absolutely necessary as skipped bits can induce errors while looking for a
key string. k, currentNode and temp are three temporary variables used in the
procedure.

Prefix-Matching. The problem is defined as follows: given a prefix P , all the
strings that start with P must be returned. In a normal trie prefix-matching is
a single pass procedure. All one has to do is to traverse to the node where P

ends and the subtrie rooted at that node will contain all the strings that start
with P . For example, in Fig.1(a) all the strings that start with a ‘T’ are found
under the node that can be reached following the ‘T’ edge from the root. This is
also true for the binary encoded trie in Fig. 1(b) and the path compressed trie
shown in Fig. 1(c).

But when the Patricia Skip value is introduced, the chance of making errors
while traversing arises. It can give rise to situations when the compared bits are
equal but the search string differs in the omitted bits along the path to the leaf
node. A two-phase search, given in [9], can effectively solve this problem. The
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procedure Lookup(S) returns boolean

{

currentNode = getFromFlashDrive(ROOT_ADDRESS);

k = currentNode.Skip;

while (currentNode.bits > 0 & k < S.length) do

temp = getValue(S, k, currentNode.bits);

k += currentNode.bits;

currentNode = getFromFlashDrive(calcAddress(temp,

currentNode.pointer));

k += currentNode.Skip;

endwhile

if (currentNodes.bits > 0 | k > S.length) then

return false;

endif

return stringCompare(S, getFromFlashDrive(currentNode.pointer));

}

Fig. 2. Lookup algorithm

first one identifies a prospective leaf node l, and in the second phase the longest

common prefix between the string stored in l and P is identified. If the common
prefix is not equal to P , then the search fails.

As DiskTrie uses similar Patricia Skip value, it is also prone to problems
just described. Moreover, because of level compression it has become an m-ary
tree in effect and hence the prefix-matching is quite different from the previously
described procedure of prefix-matching in Patricia tries. In this case, situation
can arise when strings containing the same prefix P , may be located in different
subtries. This happens when Patricia trie is level compressed using the procedure
described in Section 2.2. But the problem eases as all the strings are stored in the
flash sequentially. Because of that ordering, the problem reduces to finding the
first string that starts with the given prefix P - all others will follow sequentially.
A range, defining the starting and ending points of the locations of the strings
in the storage, is also provided to reduce the number of string comparisons.

The total procedure of Prefix-Matching is basically divided into two separate
phases.

– In the first phase, the trie is traced using P in a fashion similar to Lookup

procedure until P is exhausted. If the tracing procedure reaches a leaf node
before P ends, the result is a trivial failure. Otherwise, the last visited node
is selected.

– In the second phase, the range where the matching strings may be located is
identified. If the traversal in the first phase ended in a node then the subtrie
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rooted at this node contains the results. A single comparison must be made
with the first of them to ensure whether all these strings start with P indeed.

But if the traversal ended in an arc, then the selected node is the last node
visited before reaching that arc. This is a particularly interesting case where
only a portion of the subtrie located in that node should be selected instead
of the entire one. The extra bits after reaching that node are used to make
this selection. The left-most and right-most leaf nodes define the range of the
location of the desired strings. Similar to the last case, a single comparison
will ensure that the resultant strings are the correct ones.
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Fig. 3. Second phase of the Prefix-Matching algorithm, when (a) ‘P’ ends in a node
(b) ‘P’ ends in an arc

An example of the two cases that may arise in the second phase of the
algorithm is shown in Fig.3. Here X is an internal node of the DiskTrie with
degree 8 and the search to find all the strings that has prefix P starts from the
root. In the first case (Fig.3(a)), when P is exhausted in node X , the subtrie
rooted at X holds the strings that start with P . But in the second case (Fig.3(b)),
P does not end in X ; instead it has some more bits, for example ‘01’, remaining
after the traversal reaches X . Then the subtries X2 and X3 will hold the result
strings as the indices of the subtries - 2 and 3 start with ‘01’ in 3-bit binary
representation. Similarly, if only one bit is remaining, say 1, then the result
strings will be in the subtries X4 to X7 in order.

Most of the procedures used in the algorithm (Fig.4) are described before
while discussing the Lookup algorithm. The only new one is startsWith(str1,
str2), which checks if str1 is a prefix of str2. lNode and rNode variables hold
the range and previousNode is used to find the range when in the second phase
traversal does not end in a node.
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procedure Prefix-Matching(P) returns CollectionOfStrings

{

previousNode = currentNode = getFromFlashDrive(ROOT_ADDRESS);

k = currentNode.Skip;

while (currentNode.bits > 0 & k < P.length) do

temp = getValue(P, k, currentNode.bits);

k += currentNode.bits;

previousNode = currentNode;

currentNode = getFromFlashDrive(calcAddress(temp,

currentNode.pointer));

k += currentNode.Skip;

endwhile

if (k > P.length) then

return {};

endif

lNode = left-most node in the probable region;

rNode = right-most node in the probable region;

if (startsWith(lNode.pointer, P)) then

return {all strings in between lNode.pointer and rNode.pointer};

else

return {};

endif

}

Fig. 4. Prefix-Matching algorithm
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4 Analysis

As DiskTrie is an external memory data structure, the main focus of the analysis
of the performance is on the number of disk accesses it takes. In addition to this,
use of internal memory and processing power is also a very important issue for
DiskTrie as it is specifically developed for mobile devices with very low memory
and processing power. In this section, theoretical bounds are given on the space
and time complexity of this data structure along with an analysis of the use of
internal memory and flash storage.

Storage Requirement

First of all, DiskTrie needs a linear storage space of
∑

n

i=0 L(i) = O(n) bytes to
save the n finite strings stored in it, where L(i) is the length of the ith string.
Next comes the question, how much space does it actually take to store this

data structure with all its nodes into the flash? It is known that a Patricia trie
with n strings needs exactly 2n − 1 nodes. So, the number of nodes after level
compression will be less than or equal to 2n−1. In the proposed implementation
each node has three fields bits, Skip and pointer. Of them, pointer with 4 bytes
will be able address up to 4GB of space which is enough at present and it is
known that if an LPC tree has n leaf nodes ⌈log log(n)⌉ bits will be enough to
store the number of child. And it can be shown that for storing independent
random strings Skip will need at most O(log n) bits. Considering all these, it is
clear that even after storing the DiskTrie the storage requirement is still linear.
It should be remembered that if NAND flash is used to store the nodes, the
page boundary must be maintained while storing trie nodes resulting in wastage
of a few bytes per page depending on the size of the DiskTrie nodes. Without
this guarantee, there is a probability that some nodes might reside across page
boundaries, which will need multiple block reads in a NAND flash.

Lookup

The Lookup algorithm accesses disk only to fetch the nodes that are on the path
to a leaf node. It means that the number is equal to the depth of that node.
Hence, for random independent strings the number of disk access is bounded by
Θ(log∗ n).

The storage requirement in the internal memory is minimal - only one node
per iteration and some other temporary variables. And all the procedures used
in the algorithm are either constant time or linear on the length of the string
resulting in a linear complexity.

Prefix-Matching

In the Prefix-Matching algorithm, disk access occurs to retrieve the nodes of the
data structure similar to Lookup, which is bounded by Θ(log∗ n). And in the
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successful case, it takes only O( n

B
) disk accesses in NAND flash to retrieve the

strings with given prefix P , where B is the page size of the flash memory. So,
total the number of disk access is bounded by Θ(log∗ n) + O( n

B
).

The internal memory requirement is still minimal. The time complexity of
the algorithm is linear and this is the combined result of placing the strings in
lexicographically sorted order and providing range to search for prefix-matched
strings. This effectively eliminates O(n) string comparisons that would have been
needed otherwise to find out where to stop retrieving.

5 Conclusion

DiskTrie is a simple but efficient implementation of trie that exploits the pos-
sibilities offered by a mobile device and its accompanying flash disk. It has a
satisfactory time and space complexity. The number of disk accesses is also very
low. Further improvement of its storage requirement can be achieved by remov-
ing the space wastage per page while storing the nodes. Considering the current
shortage of flash-specific data structures [11], DiskTrie can be regarded as a
significant step toward future.
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