
Partitioning Graphs of Supply and Demand

Takehiro Ito

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.

take@nishizeki.ecei.tohoku.ac.jp

Abstract. Suppose that each vertex of a graph G is either a supply
vertex or a demand vertex and is assigned a positive real number, called
the supply or the demand. Each demand vertex can receive “power”
from at most one supply vertex through edges in G. One thus wishes to
partition G into connected components so that each component C either
has no supply vertex or has exactly one supply vertex whose supply is at
least the sum of demands in C, and wishes to maximize the fulfillment,
that is, the sum of demands in all components with supply vertices. This
maximization problem is known to be NP-hard even for trees having
exactly one supply vertex and strongly NP-hard for general graphs. In
this paper, we focus on the approximability of the problem. We first show
that the problem is MAXSNP-hard and hence there is no polynomial-
time approximation scheme (PTAS) for general graphs unless P = NP.
We then present a fully polynomial-time approximation scheme (FPTAS)
for trees. The FPTAS can be extended for series-parallel graphs and
partial k-trees, that is, graphs with bounded treewidth, if there is exactly
one supply vertex in the graph. This is a joint work with E. Demaine,
T. Nishizeki and X. Zhou.

Keywords: approximation algorithm, demand, FPTAS, maximum parti-
tion problem, MAXSNP-hard, supply, trees.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. The set V is
partitioned into two sets Vs and Vd. Each vertex u ∈ Vs is called a supply vertex

and is assigned a positive real number sup(u), called a supply of u, while each
vertex v ∈ Vd is called a demand vertex and is assigned a positive real number
dem(v), called a demand of v. Each demand vertex can receive “power” from
at most one supply vertex through edges in G. One thus wishes to partition G
into connected components by deleting edges from G so that each component

M. Kaykobad and M. S. Rahman (Eds.): WALCOM 2007, pp. 162–179, 2007.

Partitioning Graphs of Supply and Demand 163

C has exactly one supply vertex whose supply is at least the sum of demands
of all demand vertices in C. However, such a partition does not always exist.
So we wish to partition G into connected components so that each component
C either has no supply vertex or has exactly one supply vertex whose supply is
at least the sum of demands of all demand vertices in C, and wish to maximize
the “fulfillment,” that is, the sum of demands of the demand vertices in all
components with supply vertices. We call this problem the maximum partition

problem [5]. The maximum partition problem has some applications to the power
supply problem for power delivery networks [1, 5, 7]. Figure 1(a) illustrates a
solution of the maximum partition problem for a graph, whose fulfillment is
(2 + 7) + (8 + 7) + (3 + 6) + (4 + 8) = 45. In Fig. 1(a) each supply vertex is
drawn as a rectangle and each demand vertex as a circle, the supply or demand
is written inside, the deleted edges are drawn by thick dotted lines, and each
connected component with a supply vertex is shaded.

Given a set A of integers and an upper bound (integer) b, the maximum subset

sum problem [2, 3] asks to find a subset C of A such that the sum of integers in C
is no greater than the bound b and is maximum among all such subsets C. The
maximum subset sum problem can be reduced in linear time to the maximum
partition problem for a particular tree, called a star, with exactly one supply
vertex at the center, as illustrated in Fig. 1(c) [5]. Since the maximum subset
sum problem is NP-hard, the maximum partition problem is also NP-hard even
for stars. Thus it is very unlikely that the maximum partition problem can be
exactly solved in polynomial time even for trees. Since there is a fully polynomial-
time approximation scheme (FPTAS) for the maximum subset sum problem [3],
one may expect that there is an FPTAS for the maximum partition problem.

In this paper, we study the approximability of the maximum partition prob-
lem. We first show that the maximum partition problem is MAXSNP-hard, and
hence there is no polynomial-time approximation scheme (PTAS) for the prob-
lem on general graphs unless P = NP. We then present an FPTAS for trees. The
FPTAS for trees can be extended to series-parallel graphs and partial k-trees,
that is, graphs with bounded treewidth, if there is exactly one supply vertex in
a graph [4]. Figure 1(b) depicts a partition of a tree T found by our FPTAS.

13

8

15

2

10 2

12

57

3

84

5

67

(a) (b) (c)

C

w

v

44

3

2 7

2

22

3

3 3

5 25

Cw

v

4

4

3

2

7

2

2

2
3

3

3

5

b = 25

supply vertex demand vertex

Fig. 1. (a) Partition of a graph G with maximum fulfillment, (b) partition of a tree T ,
and (c) a star S with a supply vertex at the center.

164 Takehiro Ito

One might think that it would be straightforward to extend the FPTAS for the
maximum subset sum problem in [3] to an FPTAS for the maximum partition
problem on trees. However, this is not the case since we must take a graph
structure into account. For example, the vertex v of demand 2 drawn by a thick
circle in Fig. 1(b) cannot be supplied power even though the supply vertex w
has marginal power 25 − (2 + 3 + 2 + 2 + 3 + 7 + 4) = 2, while the vertex v
in Fig. 1(c) can be supplied power from the supply vertex w in the star having
the same supply and demands as in Fig. 1(b). Indeed, we not only extend the
“scaling and rounding” technique but also employ many new ideas to derive our
FPTAS. This is a joint work with E. Demaine, T. Nishizeki and X. Zhou [4, 5].

The rest of the paper is organized as follows. In Section 2 we show that
the maximum partition problem is MAXSNP-hard. In Section 3 we present a
pseudo-polynomial-time algorithm for trees. In Section 4 we present an FPTAS
based on the algorithm in Section 3.

2 MAXSNP-hardness

The main result of this section is the following theorem.

Theorem 1. The maximum partition problem is MAXSNP-hard for bipartite

graphs.

Proof. As in [8, 9], we use the concept of “L-reduction” which is a special kind
of reduction that preserves approximability. Suppose that both A and B are
maximization problems. Then we say that A can be L-reduced to B if there exist
two polynomial-time algorithms Q and R and two positive constants α and β
which satisfy the following two conditions (1) and (2) for each instance IA of A:

(1) the algorithm Q returns an instance IB = Q(IA) of B such that OPTB(IB)
≤ α ·OPTA(IA), where OPTA(IA) and OPTB(IB) denote the maximum
solution values of IA and IB, respectively; and

(2) for each feasible solution of IB with value cB, the algorithm R returns
a feasible solution of IA with value cA such that OPTA(IA) − cA ≤
β ·

(

OPTB(IB) − cB

)

.
Note that, by condition (2) of the L-reduction, R must return the optimal solu-
tion of IA for the optimal solution of IB.

We show that a MAXSNP-hard problem, called “3-occurrence MAX3SAT” [8,
9], can be L-reduced to the maximum partition problem for bipartite graphs.
However, due to the page limitation, we only show in this extended abstract
that condition (1) of the L-reduction holds.

We now show that condition (1) of the L-reduction holds for α = 26. An
instance Φ of 3-occurrence MAX3SAT consists of a collection of m clauses
C1, C2, · · · , Cm on n variables x1, x2, · · · , xn such that each clause has exactly
three literals and each variable appears at most three times in the clauses. The
3-occurrence MAX3SAT problem is to find a truth assignment for the variables
which satisfies the maximum number of clauses. Then it suffices to show that,

Partitioning Graphs of Supply and Demand 165

7

44xj xj

7

44x1 x1

7

44x3 x3

7

44x2 x2

1 1 1

(a) Gxj
 (b) GΦ

C3C2C1

Gx1
Gx2

Gx3

Fig. 2. (a) Variable gadget Gxj
, and (b) the bipartite graph GΦ corresponding to an

instance Φ with three clauses C1 = (x1 ∨ x̄2 ∨ x3), C2 = (x̄1 ∨ x̄2 ∨ x3) and C3 =
(x̄1 ∨ x̄2 ∨ x̄3).

from each instance Φ of 3-occurrence MAX3SAT, one can construct in polyno-
mial time a bipartite graph GΦ as an instance of the maximum partition problem
such that

OPTMPP (GΦ) ≤ 26 · OPTSAT (Φ), (1)

where OPTMPP (GΦ) is the maximum solution value of the maximum partition
problem for GΦ and
OPTSAT (Φ) is the maximum solution value of 3-occurrence MAX3SAT for Φ.

We first make a variable gadget Gxj
for each variable xj , 1 ≤ j ≤ n; Gxj

is
a binary tree with three vertices as illustrated in Fig. 2(a); the root is a supply
vertex of supply 7, and two leaves xj and x̄j are demand vertices of demands
4. The graph GΦ is constructed as follows. For each variable xj , 1 ≤ j ≤ n,
put the variable gadget Gxj

to the graph, and for each clause Ci, 1 ≤ i ≤ m,
put a demand vertex Ci of demand 1 to the graph. Finally, for each clause Ci,
1 ≤ i ≤ m, join a demand vertex xj (or x̄j) in Gxj

with the demand vertex Ci

if and only if the literal xj (or x̄j) is in Ci, as illustrated in Fig. 2(b). Clearly,
GΦ can be constructed in polynomial time, and is a bipartite graph. It should
be noted that, since each variable xj , 1 ≤ j ≤ n, appears at most three times in
the clauses, the supply vertex in Gxj

has enough “power” to supply all demand
vertices Ci whose corresponding clauses have xj or x̄j . Then one can verify
Eq. (1), whose proof is omitted from this extended abstract. Q.E .D.

3 Pseudo-polynomial-time algorithm for trees

The maximum partition problem is NP-hard even for trees. However, in this
section, we give a pseudo-polynomial-time algorithm to solve the maximum par-
tition problem for trees. The main result of this section is the following theorem.

Theorem 2. The maximum partition problem can be solved for a tree T =
(V, E) in time O(F 2n) if the demands and supplies are integers, where n = |V |
and F = min{

∑

v∈Vd
dem(v),

∑

v∈Vs
sup(v)}.

166 Takehiro Ito

In the remainder of this section we give an algorithm to solve the maximum
partition problem for trees in time O(F 2n) as a proof of Theorem 2. In Subsection
3.1 we define some terms and present ideas of our algorithm. We then present
our algorithm in Subsection 3.2. We finally show, in Subsection 3.3, that our
algorithm takes time O(F 2n).

3.1 Terms and ideas

We partition a graph G into connected components by deleting edges from G so
that

(a) each component contains at most one supply vertex; and
(b) if a component C contains a supply vertex, then the supply is no less

than the sum of demands of all demand vertices in C.

Such a partition is called a partition of G. Thus a partition P of G corresponds to
a family of sets of vertices in G. The fulfillment f(P) of a partition P is the sum
of demands of all demand vertices in components with supply vertices. The max-

imum partition problem is to find a partition of G with the maximum fulfillment.
The maximum fulfillment f(G) of a graph G is the maximum fulfillment f(P)
among all partitions P of G. Clearly f(G) ≤ F . For the graph G in Fig. 1(a)
the partition P has the maximum fulfillment, and hence f(G) = f(P) = 45.

One may assume without loss of generality that T is a rooted tree. Let r be
the root of T . For each vertex v of T , we denote by Tv the subtree of T which is
rooted at v and is induced by all descendants of v in T . We denote by R the set of
all real numbers. Let R

+ = {x ∈ R | x ≥ 0}. Our idea is to consider three types
of partitions of the rooted subtree Tv of T . The first is called a j-out partition,
which can deliver an amount j of marginal power outside Tv through v. The
second is called a j-in partition, which needs an amount j of deficient power
to be delivered inside Tv through v. The third is called an isolated partition,
in which the set containing v is a singleton. For these partitions, we introduce
three functions gout : (T , R) → R

+ ∪ {−∞}, gin : (T , R) → R
+ ∪ {+∞} and

g0 : (T , R) → {0, +∞}, where T denotes the set of all trees. For Tv ∈ T and
x ∈ R, the value gout(Tv; x) represents the maximum marginal power of a j-out
partition P of Tv such that f(P) ≥ x, gin(Tv; x) represents the minimum deficient
power of a j-in partition P of Tv such that f(P) ≥ x, and g0(Tv; x) = 0 if Tv

has an isolated partition P such that f(P) ≥ x, otherwise, g0(Tv; x) = +∞. Our
idea is to compute gout, gin and g0 from the leaves of T to the root r of T by
means of dynamic programming.

v

¥¥¥

¥¥¥

¥¥¥

¥¥¥

Tv
i

v1 v2 vi vl

ei ele1 e2

Tv1 Tv2 Tvi Tvl

Fig. 3. Tree Tv.

Partitioning Graphs of Supply and Demand 167

Let v be a vertex of T , let v1, v2, · · · , vl be the children of v ordered
arbitrarily, and let ei, 1 ≤ i ≤ l, be the edge joining v and vi, as illustrated in
Fig. 3. Tvi

, 1 ≤ i ≤ l, is the subtree of T which is rooted at vi and is induced
by all descendants of vi in T . We denote by T i

v the subtree of T which consists
of the vertex v, the edges e1, e2, · · · , ei and the subtrees Tv1

, Tv2
, · · · , Tvi

.
In Fig. 3, T i

v is indicated by a dotted line. Clearly Tv = T l
v. For the sake of

notational convenience, we denote by T 0
v the subtree of a single vertex v.

Let P be a partition of a rooted subtree Tv of T , and let C(P) be the set
of all vertices in the connected component containing the root v of Tv in P , as
illustrated in Figs. 4(a), 5(a) and 6(a). For each real number j ∈ R

+, we now
formally define j-out, j-in and isolated partitions as follows.

(a) A partition P of Tv is called a j-out partition if C(P) contains a supply
vertex w and sup(w) ≥ j +

∑

u∈C(P)−{w} dem(u). (See Fig. 4(a).) A j-out par-
tition of Tv corresponds to a partition of the whole tree T in which all demand
vertices in C(P) are supplied power from a supply vertex in Tv; an amount j
of power can be delivered outside Tv through v, and hence the “margin” of P
is j. If a virtual demand vertex vd with dem(vd) = j is joined to the root v
of Tv as illustrated in Fig. 4(b), then vd and all demand vertices in C(P) can
be supplied power from w in the resulting tree T +

v . A j-out partition P of Tv

induces a partition P+ of T +
v such that f(P+) = f(P)+ j, where the connected

component containing v in P+ contains the vertices in C(P)∪ {vd} and each of
the other components in P+ is the same as the counterpart in P , as illustrated
in Fig. 4.

(b) A partition P of Tv is called a j-in partition if C(P) contains no supply
vertex and

∑

u∈C(P) dem(u) ≤ j. (See Fig. 5(a).) Thus, if P is a j-in partition,

then v is a demand vertex and dem(v) ≤ j. A j-in partition of Tv corresponds to
a partition of T in which all (demand) vertices in C(P) including v are supplied
power from a supply vertex outside Tv; an amount j of power must be delivered
inside Tv through v, and hence the “deficiency” of P is j. If a virtual supply
vertex vs with sup(vs) = j is joined to the root v of Tv as illustrated in Fig. 5(b),
then all (demand) vertices in C(P) can be supplied power from vs in the resulting

vv

jvd

(a) P 		 	 	 	 (b) P
+

C(P) with supply w

w w

Fig. 4. (a) Tree Tv and (b) tree T+
v .

168 Takehiro Ito

tree T ∗
v . For a j-in partition P of Tv, let f∗(P) = f(P) +

∑

u∈C(P) dem(u).

Clearly, a j-in partition P of Tv induces a partition P ∗ of T ∗
v such that f(P ∗) =

f∗(P).

jvs

vv

(a) P 		 	 	 	 (b) P
*

C(P) without supply

Fig. 5. (a) Tree Tv and (b) tree T ∗

v .

(c) A partition P of Tv is called an isolated partition if C(P) consists of a
single demand vertex v. (See Fig. 6(a).) An isolated partition P of Tv corresponds
to a partition P ′ of T in which v is not supplied power from any supply vertex
in T . Such a partition P ′ of T does not always induce an isolated partition P
of Tv. However, subdividing the component of P ′ containing v into singletons,
one can transform P ′ to a partition P ′′ of T such that f(P ′′) = f(P ′) and P ′′

induces an isolated partition P of Tv, as illustrated in Figs. 6(b) and (c).

vv

(a) P 	 	 	 (b) P' (c) P''

a singleton

C(P)

v

no supply

Fig. 6. (a) Tree Tv, and (b), (c) tree T .

We are now ready to give a formal definition of the three functions gout, gin

and g0. We first define gout : (T , R) → R
+ ∪ {−∞} for a tree Tv ∈ T and a real

number x ∈ R, as follows:

gout(Tv; x) = max{j ∈ R
+ | Tv has a j-out partition P such that f(P) ≥ x }.(2)

Thus, gout(Tv; x) is the maximum amount j of “marginal power” of a j-out
partition P such that f(P) ≥ x. If Tv has no j-out partition P with f(P) ≥ x
for any number j ∈ R

+, then let gout(Tv; x) = −∞. We then similarly define

Partitioning Graphs of Supply and Demand 169

gin : (T , R) → R
+∪{+∞} for a tree Tv ∈ T and a real number x ∈ R, as follows:

gin(Tv; x) = min{j ∈ R
+ | Tv has a j-in partition P such that f∗(P) ≥ x}.(3)

Thus, gin(Tv; x) is the minimum amount j of “deficient power” of a j-in partition
P such that f∗(P) ≥ x. If Tv has no j-in partition P with f∗(P) ≥ x for any
number j ∈ R

+, then let gin(Tv; x) = +∞. We finally define g0 : (T , R) →
{0, +∞} for a tree Tv ∈ T and a real number x ∈ R, as follows:

g0(Tv; x) =

{

0 if Tv has an isolated partition P such that f(P) ≥ x;
+∞ otherwise.

(4)

The function gout takes a value in R
+ ∪{−∞}, gin takes a value in R

+ ∪{+∞},
and g0 takes a value 0 or +∞. Clearly, gout is non-increasing, and both gin and g0

are non-decreasing. For any negative real number x < 0, gout(Tv; x) = gout(Tv; 0),
gin(Tv; x) = gin(Tv; 0), and g0(Tv; x) = g0(Tv; 0).

Our algorithm computes gout(Tv; x), gin(Tv; x) and g0(Tv; x) for each vertex
v of T from the leaves to the root r of T by means of dynamic programming.

3.2 algorithm

We first show how to compute the maximum fulfillment f(T) of a given tree T
from gout(T ; x), gin(T ; x) and g0(T ; x).

[How to compute f(T)]
Let fout(Tv) be the maximum fulfillment f(P) taken over all j-out partitions

P of Tv with j ∈ R
+. Thus

fout(Tv) = max{x ∈ R
+ | gout(Tv; x) 6= −∞}. (5)

If gout(Tv; x) = −∞ for any number x ∈ R, then let fout(Tv) = −∞. On the
other hand, let f0(Tv) be the maximum fulfillment f(P) taken over all isolated
partitions P of Tv. Thus

f0(Tv) = max{x ∈ R
+ | g0(Tv; x) 6= +∞}. (6)

If g0(Tv; x) = +∞ for any number x ∈ R, that is, v is a supply vertex, then let
f0(Tv) = −∞. One can easily observe that

f(Tv) = max{fout(Tv), f0(Tv)},

and hence

f(T) = f(Tr) = max{fout(Tr), f0(Tr)}

for the root r of T . Note that a partition of T = Tr with the maximum fulfillment
f(T) is either an isolated partition or a j-out partition for some number j ∈ R

+.

170 Takehiro Ito

We then explain how to compute gout(Tv; x), gin(Tv; x) and g0(Tv; x) for each
vertex v of T .

[How to compute gout(Tv; x), gin(Tv; x) and g0(Tv; x)]
We first compute gout(T

0
v ; x), gin(T

0
v ; x) and g0(T

0
v ; x) for each vertex v of T

as follows. Since T 0
v consists of a single vertex v, Tv = T 0

v if v is a leaf. If v is a
demand vertex, then for any number x ∈ R

gout(T
0
v ; x) = −∞, (7)

gin(T
0
v ; x) =

{

dem(v) if x ≤ dem(v);
+∞ otherwise,

(8)

and

g0(T
0
v ; x) =

{

0 if x ≤ 0;
+∞ otherwise.

(9)

If v is a supply vertex, then for any number x ∈ R

gout(T
0
v ; x) =

{

sup(v) if x ≤ 0;
−∞ otherwise,

(10)

gin(T
0
v ; x) = +∞, (11)

and

g0(T
0
v ; x) = +∞. (12)

We next compute gout(T
i
v; x), gin(T

i
v; x) and g0(T

i
v; x), 1 ≤ i ≤ l, for each

internal vertex v of T from the counterparts of T i−1
v and Tvi

, where l is the
number of the children of v. (See Fig. 3.) Remember that Tv = T l

v, and note
that T i

v is obtained from T i−1
v and Tvi

by joining v and vi as illustrated in Fig. 7
where T i−1

v is indicated by a thin dotted line.

We first explain how to compute gout(T
i
v; x). Let P be a j-out partition of

T i
v such that f(P) ≥ x and j = gout(T

i
v; x) 6= −∞. Then there are the following

four Cases (a)–(d):
Case (a): vi is supplied power from a vertex in T i−1

v ;
Case (b): vi is not supplied power;
Case (c): vi is supplied power from a vertex in Tvi

, and either v is a supply
vertex or v is supplied power from a vertex in T i−1

v ; and
Case (d): v is supplied power from a vertex in Tvi

.

Partitioning Graphs of Supply and Demand 171

Figures 7(a)–(d) illustrate the power flows in T i
v for the four cases, where an

arrow represents the direction of power supply, and a thick dotted line repre-
sents a deleted edge. For x ∈ R and y ∈ R, we define ga

out(T
i
v; x, y), gb

out(T
i
v; x, y),

gc
out(T

i
v; x, y) and gd

out(T
i
v; x, y) for Cases (a), (b), (c) and (d), respectively. Intu-

itively, x and y are the fulfillments of T i
v and T i−1

v , respectively.

v

j

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

(c)

 j
 k

v

j

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

(d)

 k j+k

(a)

v

j

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

 k
k-j

(b)

v

j

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

 j
0

Fig. 7. Power flow in a j-out partition of T i

v.

Case (a): vi is supplied power from a vertex in T i−1
v .

In this case, for some number k ∈ R
+ with k ≥ j, the j-out partition P of T i

v

can be obtained by merging a k-out partition P1 of T i−1
v and a (k−j)-in partition

P2 of Tvi
such that f(P) = f(P1) + f∗(P2). (See Fig. 7(a). The component of

P containing v consists of the vertices in C(P1) ∪ C(P2), and each of the other
components of P corresponds to a component of P1 or P2.) Since f(P) = f(P1)+
f∗(P2) ≥ x, we have f(P1) ≥ y and f∗(P2) ≥ x − y for some number y ∈ R.
Since P1 is a k-out partition of T i−1

v with f(P1) ≥ y, one may assume by Eq. (2)
that k = gout(T

i−1
v ; y). Similarly one may assume that k − j = gin(Tvi

; x − y).
Since gout(T

i
v; x) = j = k − (k − j), we define

ga
out(T

i
v; x, y) = gout(T

i−1
v ; y) − gin(Tvi

; x − y) (13)

for Case (a).

Case (b): vi is not supplied power.

In this case, P can be obtained by merging a j-out partition P1 of T i−1
v and

an isolated partition P2 of Tvi
such that f(P1) ≥ y and f(P2) ≥ x − y for some

number y ∈ R. (See Fig. 7(b). The family of sets of vertices corresponding to
P is a union of two families corresponding to P1 and P2.) Then j = j − 0, and
hence let

gb
out(T

i
v; x, y) = gout(T

i−1
v ; y) − g0(Tvi

; x − y). (14)

Case (c): vi is supplied power from a vertex in Tvi
, and either v is a supply vertex

or v is supplied power from a vertex in T i−1
v .

In this case, for some number k ∈ R
+, P can be obtained by merging a j-out

partition P1 of T i−1
v and a k-out partition P2 of Tvi

such that f(P1) ≥ y and
f(P2) ≥ x − y for some numbers k ∈ R

+ and y ∈ R. (See Fig. 7(c). The family

172 Takehiro Ito

of sets of vertices corresponding to P is a union of two families corresponding to
P1 and P2.) Then let

gc
out(T

i
v; x, y) =

{

gout(T
i−1
v ; y) if gout(Tvi

; x − y) 6= −∞;
−∞ if gout(Tvi

; x − y) = −∞.
(15)

Case (d): v is supplied power from a vertex in Tvi
.

In this case, either vi is a supply vertex or both v and vi are supplied power
from the same supply vertex in Tvi

. For some number k ∈ R
+, P can be obtained

by merging a k-in partition P1 of T i−1
v and a (j + k)-out partition P2 of Tvi

such that f∗(P1) ≥ y and f(P2) ≥ x − y for some numbers k ∈ R
+ and y ∈

R. (See Fig. 7(d). The component of P containing v consists of the vertices
in C(P1) ∪ C(P2), and each of the other components of P corresponds to a
component of P1 or P2.) Then j = (j + k) − k, and hence let

gd
out(T

i
v; x, y) = gout(Tvi

; x − y) − gin(T
i−1
v ; y). (16)

From ga
out, gb

out, gc
out and gd

out above one can compute gout(T
i
v; x) as follows:

gout(T
i
v; x) = max{ga

out(T
i
v; x, y), gb

out(T
i
v; x, y), gc

out(T
i
v; x, y), gd

out(T
i
v; x, y) | y ∈ R}.(17)

v

j

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

(c)

 j
k

v

j

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

(a)

 k
j-k

v

j

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

(b)

 j
0

Fig. 8. Power flow in a j-in partition of T i

v.

We next explain how to compute gin(T
i
v; x). Let P be a j-in partition such

that f∗(P) ≥ x and j = gin(T
i
v; x) 6= +∞. Then there are the following three

Cases (a), (b) and (c):
Case (a): vi ∈ C(P);
Case (b): vi /∈ C(P), and vi is not supplied power; and
Case (c): vi /∈ C(P), and vi is supplied power from a vertex in Tvi

.
Figures 8(a)–(c) illustrate the power flows in T i

v for the three cases. We define
ga
in(T

i
v; x, y), gb

in(T
i
v; x, y) and gc

in(T
i
v; x, y) for Cases (a), (b) and (c), respectively,

as follows.

Case (a): vi ∈ C(P).
In this case, the j-in partition P can be obtained by merging a k-in partition

P1 of T i−1
v and a (j − k)-in partition P2 of Tvi

such that f∗(P1) ≥ y and

Partitioning Graphs of Supply and Demand 173

f∗(P2) ≥ x − y for some numbers k ∈ R
+ and y ∈ R. (See Fig. 8(a).) Then

j = k + (j − k), and hence let

ga
in(T

i
v; x, y) = gin(T

i−1
v ; y) + gin(Tvi

; x − y). (18)

Case (b): vi /∈ C(P), and vi is not supplied power.

In this case, P can be obtained by merging a j-in partition P1 of T i−1
v and

an isolated partition P2 of Tvi
such that f∗(P1) ≥ y and f(P2) ≥ x− y for some

number y ∈ R. (See Fig. 8(b).) Then j = j + 0, and hence let

gb
in(T

i
v; x, y) = gin(T

i−1
v ; y) + g0(Tvi

; x − y). (19)

Case (c): vi /∈ C(P), and vi is supplied power from a vertex in Tvi
.

In this case, P can be obtained by merging a j-in partition P1 of T i−1
v and

a k-out partition P2 of Tvi
such that f∗(P1) ≥ y and f(P2) ≥ x − y for some

numbers k ∈ R
+ and y ∈ R. (See Fig. 8(c).) Then let

gc
in(T

i
v; x, y) =

{

gin(T i−1
v ; y) if gout(Tvi

; x − y) 6= −∞;
+∞ if gout(Tvi

; x − y) = −∞.
(20)

From ga
in, gb

in and gc
in above one can compute gin(T

i
v; x) as follows:

gin(T
i
v; x) = min{ga

in(T
i
v; x, y), gb

in(T
i
v; x, y), gc

in(T i
v; x, y) | y ∈ R}. (21)

v

0

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

(b)

k

�E�E�E

�E�E�E

v

0

v
1

Tv
i

Tv
i-1

vi-1

Tv1
Tvi-1

vi

Tvi

(a)

�E�E�E

�E�E�E

0

Fig. 9. Power flow in an isolated partition of T i

v.

We finally explain how to compute g0(T
i
v; x). Let P be an isolated partition

such that f(P) ≥ x. There are the following two Cases (a) and (b), and we define
ga
0 (T i

v; x, y) and gb
0(T

i
v; x, y) for Cases (a) and (b), respectively.

Case (a): vi is a demand vertex and is not supplied power.

In this case, the isolated partition P can be obtained by merging an isolated
partition P1 of T i−1

v and an isolated partition P2 of Tvi
such that f(P1) ≥ y and

f(P2) ≥ x − y for some number y ∈ R. (See Fig. 9(a).) Then let

ga
0 (T i

v; x, y) = g0(T
i−1
v ; y) + g0(Tvi

; x − y). (22)

174 Takehiro Ito

Case (b): either vi is a supply vertex or vi is supplied power (from a vertex in

Tvi
).
In this case P can be obtained by merging an isolated partition P1 of T i−1

v

and a k-out partition P2 of Tvi
such that f(P1) ≥ y and f(P2) ≥ x− y for some

numbers k ∈ R
+ and y ∈ R. (See Fig. 9(b).) Then let

gb
0(T

i
v; x, y) =

{

g0(T
i−1
v ; y) if gout(Tvi

; x − y) 6= −∞;
+∞ if gout(Tvi

; x − y) = −∞.
(23)

From ga
0 and gb

0 above one can compute g0(T
i
v; x) as follows:

g0(T
i
v; x) = min{ga

0(T i
v; x, y), gb

0(T
i
v; x, y) | y ∈ R}. (24)

3.3 Proof of Theorem 2

We now show that our algorithm takes time O(F 2n) as a proof of Theorem 2.
Since all the supplies and demands in T are integers, f(P) and f∗(P) are

integers for any partition P of Tv. We denote by Z the set of all integers. Let
Z

+ = {x ∈ Z | x ≥ 0} and Z
+
F = {x ∈ Z | 0 ≤ x ≤ F}. Define a function

ĝout : (T , Z) → Z
+ ∪ {−∞} for a tree Tv ∈ T and an integer x ∈ Z similarly as

gout : (T , R) → R
+ ∪ {−∞} in Eq. (2):

ĝout(Tv; x) = max{j ∈ Z
+ | Tv has a j-out partition P such that f(P) ≥ x }.

Define functions ĝin : (T , Z) → Z
+ ∪{+∞} and ĝ0 : (T , Z) → {0, +∞} similarly

as gin and g0 in Eqs. (3) and (4). Define integral values f̂out(Tv) and f̂0(Tv)
similarly as fout(Tv) and f0(Tv) in Eqs. (5) and (6):

f̂out(Tv) = max{x ∈ Z
+ | ĝout(Tv; x) 6= −∞}; (25)

and

f̂0(Tv) = max{x ∈ Z
+ | ĝ0(Tv; x) 6= +∞}. (26)

Then f̂out(Tv) = fout(Tv) and f̂0(Tv) = f0(Tv), and hence

f(Tv) = max{f̂out(Tv), f̂0(Tv)}. (27)

We shall thus compute values ĝout(Tv; x), ĝin(Tv; x) and ĝ0(Tv; x) for all integers
x ∈ Z. However, one can easily observe that it suffices to compute them only for
integers x ∈ Z

+
F .

One can compute values ĝout(T
0
v ; x), ĝin(T 0

v ; x) and ĝ0(T
0
v ; x) for a vertex v

of T and all integers x ∈ Z
+
F in time O(F) by the counterparts of Eqs. (7)–

(12). If i ≥ 1, then one can recursively compute values ĝout(T
i
v; x), ĝin(T

i
v; x)

and ĝ0(T
i
v; x) for an internal vertex v of T and all integers x ∈ Z

+
F in time

O(|ZF |2) = O(F 2) by the counterparts of Eqs. (13)–(24). Since Tv = T l
v, one

can compute f̂out(Tv), f̂0(Tv) and f(Tv) by Eqs. (25)–(27) in time O(F). Since

Partitioning Graphs of Supply and Demand 175

T = Tr for the root r of T , the number of vertices in T is n and the number of
edges is n − 1, one can compute f(T) = f(Tr) in time O(F 2n). This completes
a proof of Theorem 2. Q.E .D.

Note that if the supplies and demands are not always integers then f(P) and
f∗(P) are not always integers and one cannot compute f(T) in time O(F 2n).

4 FPTAS for trees

Assume in this section that the supplies and demands of all vertices in a tree T
are positive real numbers which are not always integers. The main result of this
section is the following theorem.

Theorem 3. There is a fully polynomial-time approximation scheme for the

maximum partition problem on trees.

In the remainder of this section, as a proof of Theorem 3, we give an algorithm
to find a partition P of a tree T with f(P) ≥ (1− ε)f(T) in time polynomial in
n and 1/ε for any real number ε, 0 < ε < 1. Thus our approximate maximum
fulfillment f̄(T) of T is f(P), and hence the error is bounded by εf(T), that is,

f(T) − f̄(T) = f(T)− f(P) ≤ εf(T). (28)

We first outline our algorithm and the analysis. We extend the ordinary
“scaling and rounding” technique for the knapsack and maximum subset sum
problems [2, 3, 6] and apply it to the maximum partition problem. For some
scaling factor t, we consider the set {· · · ,−2t,−t, 0, t, 2t, · · · } as the range of
functions gout, gin and g0, and find the approximate solution f̄(T) by using the
pseudo-polynomial-time algorithm in Section 3. As we will show later in Lemma
2(c), we have

f(T) − f̄(T) < 2nt. (29)

Intuitively, Eq. (29) holds because the merge operation is executed no more than
2n times and each merge operation adds at most t to the error f(T) − f̄(T).
Let md be the maximum demand, that is, md = max{dem(v) | v ∈ Vd}. Taking
t = εmd/(2n) and claiming f(T) ≥ md, we have Eq. (28).

We now give the details of our algorithm and the proof of its correctness.
For a positive real number t, let R

t = {· · · ,−2t,−t, 0, t, 2t, · · · } and R
t+
F = {x ∈

R
t | 0 ≤ x ≤ F}. The functions gout, gin and g0 have range R. In this section

we define new functions ḡout, ḡin and ḡ0 which have a sampled range R
t and

approximate gout, gin and g0, respectively. It should be noted that ḡout, ḡin and
ḡ0 do not always take the same value as gout, gin and g0, respectively, even for
x ∈ R

t. More precisely, we

176 Takehiro Ito

(i) recursively define and compute ḡout(Tv; x), ḡin(Tv; x) and ḡ0(Tv; x) for
x ∈ R

t by the counterparts of Eqs. (7)–(24);
(ii) define and compute values f̄out(Tv) and f̄0(Tv) by the counterparts of

Eqs. (5) and (6), that is,

f̄out(Tv) = max{x ∈ R
t+
F | ḡout(Tv; x) 6= −∞}

and

f̄0(Tv) = max{x ∈ R
t+
F | ḡ0(Tv; x) 6= +∞};

(iii) define and compute

f̄(Tv) = max{f̄out(Tv), f̄0(Tv)}; and

(iv) define and compute f̄(T) = f̄(Tr) where r is the root of T .

We will show later in Lemma 2(c) that f̄(T) is an approximate value of f(T)
satisfying Eq. (29). It should be noted that the supplies and demands are never
scaled and rounded when we compute the functions ḡout, ḡin and ḡ0 as above, and
hence these functions take real values which are not necessarily in R

t
F , although

f̄out, f̄0 and f̄ take values in R
t+
F .

The functions ḡout, ḡin and ḡ0 approximate the original functions gout, gin

and g0 as in the following lemma, whose proof is omitted due to the page limita-
tion. Note that ḡout(Tv; x) = ḡout(Tv; 0), ḡin(Tv; x) = ḡin(Tv; 0) and ḡ0(Tv; x) =
ḡ0(Tv; 0) for any negative number x ∈ R

t.

Lemma 1. Let s(T i
v) be the size of T i

v, that is, the number of vertices and edges

in T i
v. Then the following (a), (b) and (c) hold:
(a) (i) ḡout(T

i
v; x) ≤ gout(T

i
v; x) for any number x ∈ R

t;
(ii) ḡout(T

i
v; x) is non-increasing; and

(iii) for any number x ∈ R, there is an integer α such that

0 ≤ α ≤ s(T i
v) − 1

and

ḡout(T
i
v; ⌊x/t⌋ t − αt) ≥ gout(T

i
v; x),

(b) (i) ḡin(T
i
v; x) ≥ gin(T i

v; x) for any number x ∈ R
t;

(ii) ḡin(T
i
v; x) is non-decreasing; and

(iii) for any number x ∈ R, there is an integer β such that

0 ≤ β ≤ s(T i
v)

and

ḡin(T
i
v; ⌈x/t⌉ t − βt) ≤ gin(T i

v; x),

and

Partitioning Graphs of Supply and Demand 177

(c) (i) ḡ0(T
i
v; x) ≥ g0(T

i
v; x) for any number x ∈ R

t;
(ii) ḡ0(T

i
v; x) is non-decreasing; and

(iii) for any number x ∈ R, there is an integer γ such that

0 ≤ γ ≤ s(T i
v)

and

ḡ0(T
i
v; ⌈x/t⌉ t − γt) ≤ g0(T

i
v; x).

We then have the following lemma, whose proof is omitted from this extended
abstract.

Lemma 2. The following (a), (b) and (c) hold:
(a) fout(T

i
v) − s(T i

v)t ≤ f̄out(T
i
v);

(b) f0(T
i
v) − s(T i

v)t ≤ f̄0(T
i
v);

and

(c) f(T)− 2nt < f̄(T) ≤ f(T).

We are now ready to prove Theorem 3.

Proof of Theorem 3.
Let v be a demand vertex with the maximum demand dem(v) = md =

max{dem(v) | v ∈ Vd} in T . Then one may assume that T has a path Q going
from v to some supply vertex u such that

(i) Q passes through only demand vertices except vertex u, and
(ii) sup(u) is no less than the sum of demands on Q,

because, otherwise, v cannot be supplied power from any supply vertex and
hence it suffices to solve the problem for each tree in a forest obtained from T
by deleting v. Thus one may assume that

f(T) ≥ md. (30)

Let

t =
εmd

2n
. (31)

Then by Lemma 2(c) and Eqs. (30) and (31) we have

f(T) < f̄(T) + 2n
εmd

2n
≤ f̄(T) + εf(T),

and hence (1 − ε)f(T) < f̄(T) ≤ f(T).

178 Takehiro Ito

One can observe that the algorithm takes time

O
(

∣

∣R
t+
F

∣

∣

2
n
)

= O

(

n5

ε2

)

,

because |Rt+
F | = ⌊F/t⌋+1, F ≤ nmd and hence by Eq. (31) we have F/t ≤ 2n2/ε.

Q.E .D.

5 Conclusions

In this paper, we studied the approximability of the maximum partition problem.
We first showed that the maximum partition problem is MAXSNP-hard. We then
gave an FPTAS for trees. It is easy to modify the FPTAS so that it actually
finds a partition of a tree. The FPTAS for trees can be extended to that for
series-parallel graphs and partial k-trees if there is exactly one supply vertex in
a graph [4].

In the ordinary knapsack problem, each “item” is assigned a “size” and
“value,” and one wishes to choose a subset of items that maximizes the sum
of values of items such that their total size does not exceed the size of a bag [3,
6]. Consider a slightly modified version of the maximum partition problem on
graphs in which each demand vertex is assigned not only a demand but also a
“value,” and one wishes to find a partition which maximizes the sum of values of
all demand vertices in components with supply vertices. This problem is indeed
a generalization of the ordinary knapsack problem, and can be solved for trees
using techniques similar to those for the maximum partition problem. Note that
the standard approximation methods for the knapsack problem in [3, 6] cannot
be applied to the modified maximum partition problem.

References

1. N. G. Boulaxis and M. P. Papadopoulos, Optimal feeder routing in distribution
system planning using dynamic programming technique and GIS facilities, IEEE
Trans. on Power Delivery, Vol. 17, pp. 242–247, 2002.

2. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

3. O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and
sum of subset problems, J. Asso. Comput. Mach., Vol. 22, pp. 463–468, 1975.

4. T. Ito, E. D. Demaine, X. Zhou and T. Nishizeki, Approximability of partitioning
graphs with supply and demand, in Proc. of the 17th Annual International Sympo-
sium on Algorithms and Computation (ISAAC2006), Lecture Notes in Computer
Science, Vol. 4288, pp. 121–130, 2006.

5. T. Ito, X. Zhou and T. Nishizeki, Partitioning trees of supply and demand, Inter-
national J. of Foundations of Computer Science, Vol. 16, pp. 803–827, 2005.

6. P. N. Klein and N. E. Young, Approximation algorithms for NP-hard optimization
problems, Chap. 34 in (Ed. M. J. Atallah) Algorithms and Theory of Computation
Handbook, CRC Press, Boca Raton, Florida, 1999.

Partitioning Graphs of Supply and Demand 179

7. A. B. Morton and I. M. Y. Mareels, An efficient brute-force solution to the network
reconfiguration problem, IEEE Trans. on Power Delivery, Vol. 15, pp. 996–1000,
2000.

8. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
9. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and com-

plexity classes, J. Computer and System Sciences, Vol. 43, pp. 425–440, 1991.

