
Methods for Searching Mutual Visible Intervals

on Moving Objects

Yoshiyuki Kusakari1, Yuta Sugimoto2, Junichi Notoya1 and Masao Kasai1

1 Department of Electronics and Information Systems,
Faculty of Systems Science and Technology,

Akita Prefectural University
2 Department of Electronics and Information Systems,
Graduate School of Systems Science and Technology,

Akita Prefectural University
{kusakari,m07b007,notoya,kasai}@akita-pu.ac.jp

Abstract. Computing visible information, such as a visible surface de-
termination, is a significant problem and has been mainly studied in the
fields of computational geometry and/or computer graphics[2, 4, 6, 10, 11,
13]. Furthermore, recently, one might be attracted to problems for deal-
ing with continuously moving objects in a geometrical space [1, 9, 12,
14]. In this paper, we propose two indexing methods, called an Mutual

Visible Intervals search tree (MVI-tree) and an Mutual Visible Intervals

search list (MVI-list). Using each index, one can efficiently find “mu-
tual visible-surfaces” of two moving objects from a query time. “Mutual
visible surfaces” are subregions which are “visible” each other. We give
algorithms for constructing an MVI-tree and an MVI-list from a set M
of two convex polygons M0 with n0 vertices and M1 with n1 vertices, in
the case where every convex polygon moves by uniform motion. An MVI-
tree of M can be constructed in time O(N log N) using space O(N) and
an MVI-list of M can be constructed in time O(N) using space O(N),
where N is the total number of vertices and N = n0 + n1. “Mutual vis-
ible intervals”, i.e. “one-dimensional mutual visible surfaces”, of M at
a query time can be found in time O(log N) using an MVI-tree or an
MVI-list.

Keyword Spatio-Temporal Index, Visible Surface Determination, Mu-
tual Visible Intervals, Moving Object, MVI-tree, MVI-list

1 Introduction

Given a set of geometrical objects, such as line segments,polytopes,· · · , and a
view point, visible surfaces are parts of the given objects which are “visible” from
the given view point [7]. The problems of determining the visible surfaces have
been mainly studied in the fields of computational geometry and/or computer
graphics [2, 4, 6, 10, 11, 13]. One can observe that these problems are equivalent

M. Kaykobad and Md. Saidur Rahman (Eds.): WALCOM 2007, pp. 13–27, 2007.



14 Y. Kusakari et al.

c0

vq

0

vel (      )M0

vp

0

vel (      )M1

M0

M1

vr

1

vs

1

VIM
0
[   ,   ]vq

1
vq

1

VIM
1
[   ,   ]vq

0
vq

0

c1

Fig. 1. The mutual visible-intervals of two moving objects.

to determine the “hidden surfaces” of objects, which are not visible from the
given view point. Especially, these problems are significant for deleting “hidden
surfaces” in the field of computer graphics. However, it has been increasing in
the fields other than computer graphics to deal with such problems of deter-
mining “visible surfaces” or “hidden surfaces.” Thus, it is desired to develop
the methods for managing such visible information. For example, Notoya et. al.
propose a method for searching all “visible objects” from many geometrical ob-
jects [10]. On the other hand, recently, much interest is attracted to methods
for dealing with “moving geometrical objects”, which change those geometrical
information, such as shapes, positions, and so on, depending on the time. We
call such objects moving objects. There are many study for storing or retrieving
such moving objects [1, 9, 12, 14]. For such problems, a representative method is
computing a “scene” for every “frame”, where a scene is a geometrical configura-
tion including coordinates and a frame is a discrete time stamp in the modeling
world[7]. Recently, Tao et. al. give an efficient method for storing and finding
positions of objects from a query time if the trajectories of moving objects are
known[14]. Patel et. al. also give another efficient method for solving a similar
problem[12].

In this paper, we will present algorithms for constructing two data structures,
if the trajectories of moving objects are given. We assume that two moving
objects are convex polygons in the plane R

2 and each objects moves by uniform
motion, that is, moves along a straight line with a fixed velocity. We also assume
that each object does not transform its shape and does not rotate. For such
situation, we give two methods for searching a pair of one dimensional mutual
visible surfaces, called mutual visible intervals, whose points are visible each
other and which are two subregions of boundary of convex polygons. Figure 1
illustrates mutual visible intervals. We present two indices (data structures), one
is called an mutual visible intervals search tree or an MVI-tree and the other is
called an mutual visible intervals search list or an MVI-list. One can efficiently
find mutual visible intervals using an MVI-tree or an MVI-list.



Searching Mutual Visible Intervals on Moving Objects 15

The remainder of this paper is organized as follows. In Section 2, we give
some preliminary definitions. In Section 3 we show some properties of mutual
visible intervals. In Section 4, we give an indexing method using an MVI-tree. In
Section 5, we present an indexing method using an MVI-list. Finally, we conclude
in Section 6.

2 Preliminaries

In this section, we define terms and notations, and formally describe our problem.
We first give a static model, and then extend it to a kinetic model.

2.1 Static Model

Let M = {M0, M1} be two convex polygons representing two moving objects.
For each i ∈ {0, 1}, moving object Mi has ni vertices and is represented by the
sequence of vertex list (vi

0, v
i
1, · · · , vi

ni−1) counterclockwise, where vi
j , 0 ≤ j < ni,

is a vertex of Mi. Each edge of Mi is denoted by ei
j = (vi

j , v
i
j+1), 0 ≤ j < ni.

We may simply denote by i for i (mod 2), and by j for j (mod ni). We denote
the total number of vertices of M by N , that is N = n0 + n1. We assume that
every edge ei

j of Mi is not horizontal, that is, is not parallel to the x-axis. Each
Mi has a representative point ci ∈ Mi and a fixed velocity vel(Mi). We denote
the x-, y-coordinate of a point p ∈ R

2 by x(p), y(p),respectively, and also denote
the x-,y-component of a 2-dimensional vector v by x(v),y(v), respectively.

For a convex polygon M , the boundary of M is denoted by B(M), and the
proper interior of M is denoted by I(M), that is I(M) = M − B(M). A point
q ∈ M is visible from an exterior point p ∈ R

2 − M if the line segment pq

does not intersect I(B), that is pq ∩ I(M) = ∅. One can easily observe that
every visible point q ∈ M is on the boundary B(M) of M . The visible region
from a point p is a maximal subregion of B(M) which is visible from a point
p, and denoted by Vp(M). Two points p0 ∈ M0 and p1 ∈ M1 are mutual visible
if the line segment p0p1 does not intersect both interiors of convex polygons,
that is p0p1 ∩ (I(M0) ∪ I(M1)) = ∅. A visible region or visible interval of M0

from M1 is a maximal subregion of M0 whose point is visible from some point
p1 ∈ M1, and denoted by VM1

(M0). One can easily observe that a visible interval
VM1

(M0) is a continuous path P = (v0
p, v0

p+1, · · · , v0
q) of B(M0). Thus, we may

also denote VM1
(M0) by V IM1

[v0
p, v0

q ]. Similarly, we denote a visible interval of
M1 from M0 by VM0

(M1) or V IM0
[v1

r , v1
s ]. A pair (V IM1

[v0
p, v0

q ], V IM0
[v1

r , v1
s ]) is

called by mutual visible intervals of M={M0, M1} and denoted by MV I( M
) = (p, q, r, s) for short, where p, q ∈ {0, · · · , n0 − 1} and r, s ∈ {0, · · · , n1 − 1}.
The mutual visible intervals determination is a problem for finding MV I( M
) = (p, q, r, s) from a given non-intersecting convex polygons M = {M0, M1}.

This problem can be solved by finding “common tangent lines.” A line l is
called a tangent line of M if M lies on the one side of l and l passes through
a vertex of M , called a tangent vertex, or an edge of M , called a tangent edge.
A line l is called a common tangent line of M={M0, M1} if l is a tangent line



16 Y. Kusakari et al.

M

M

0vq

1vr

1vs
0vp

0

1

Fig. 2. Four common tangents of two convex polygons.

of both M0 and M1. A common tangent line l of M={M0, M1} is called iso-
common tangent if both M0 and M1 are contained in the same half plane defined
by l, otherwise l is called hetero common tangent. Generally, there exist four
common tangent lines, two of them are iso common tangent lines, and other
two are hetero common tangent lines. In Figure 2, iso-common tangent lines
drawn by solid lines, hetero-common tangent lines drawn by dashed lines. Using
an ordinary method of computational geometry, one can find these common
tangent lines in time O(N), thus one can find mutual visible intervals MV I( M
) in linear time [6, 11, 13].

2.2 Kinetic Model

Let T = (−∞,∞) ⊂ R be a set of time. A moving object o can be regarded as
a subregion of R

2 × T , and hence we call the space R
2 × T the kinetic space K.

A trajectory of o is a subregion of K taken by o, where moving objects o may
be points, line segments, lines,or polygons. For a time tf ∈ T , a scene of tf is
a intersection of the kinetic space K and a plane of t = tf , and is represented

by a map SC : T → 2R
2

. For every objects o ⊆ K, the configuration of o in
scene SC(t) is denoted by o(t). For example, we denote a convex polygon M at
a time t ∈ T by Mi(t) = (vi

0(t), . . . , v
i
ni−1(t)). We assume M0(t) ∩ M1(t) = ∅

for every time t ∈ T . An initial configuration is a scene SC(0) at time t = 0.
Given an initial configuration SC(0) containing M (0) = {M0(0), M1(0)}, two
velocities vel(M0),vel(M1), and a time t ∈ T , a determining kinetic MVI prob-
lem of M (t) = {M0(t), M1(t)} is to determine kinetic mutual visible intervals
(V IM1(t)[v

0
p(t), v0

q (t)], V IM0(t)[v
1
r(t), v1

s(t)]). We also denote kinetic mutual visi-
ble intervals by MV I( M (t)) = (p, q, r, s) or MV I(t) = (p, q, r, s) for short.

One can solve this kinetic MVI determination problem using a straightfor-
ward algorithm as follows. It first computes the scene SC(t) of t ∈ T , then finds
two iso-common tangent lines of M0(t) and M1(t), finally finds kinetic mutual
visible intervals MV I(t). Each Mi(t) can clearly be computed from Mi(0) and
vel(Mi) in time O(ni), and hence a scene SC(t) can be computed in time O(N).
Two iso-common tangent lines can also be found in time O(N), as mentioned
before[6, 11, 13]. Thus,this algorithm would take time O(N). However, this time



Searching Mutual Visible Intervals on Moving Objects 17

complexity is not optimal for the case where many mutual visible intervals should
be found for many time stamps. Let TF = (t1, t2, · · · , tF ) ⊂ T be a set of dis-
crete time stamps. Given a initial configuration SC(0), two velocities vel(M0),
vel(M1), and a set TF = (t1, t2, · · · , tF ) of discrete times, a searching kinetic MVI
problem of M(t) is to find the sequence (MV I(t1), MV I(t2), · · · , MV I(tF ))
of mutual visible intervals. This searching problem can be also solved by using
the above ordinary algorithm repeatedly, however such algorithm would take
time O(FN). On the other hand, we present faster methods to solve a searching
problem. We propose two data structures, called an MVI-tree and an MVI-
list. We give an algorithm for constructing an MVI-tree which runs in time
O(N log N). Each MV I(tf ) can be found in time O(log N) for each query time
tf ∈ TF using an MVI-tree. Thus, a searching MVI problem can be solved in time
O((N + F ) log N) using an MVI-tree. We also give an algorithm for construct-
ing an MVI-list which runs in time O(N). Each MV I(tf ) can be found in time
O(log N) for each query time tf ∈ TF using an MVI-list. Thus, the searching
MVI problem can be solved in time O(N + F log N) using an MVI-list.

3 Properties of Mutual Visible Intervals

In this section, we show some properties of mutual visible intervals for construct-
ing data structures.

We may assume that one of moving objects Mi(t) ∈ M (t) has a zero vector
0 as a velocity vel(Mi). If both objects Mi(t) do not have zero vectors, we
transform M (t) = {M0(t), M1(t)} to M ′(t) = {M ′

0(t), M
′

1(t)} which are defined
by M ′

0(0) = M0(0), M ′

1(0) = M1(0), vel(M ′

0) = vel(M0) − vel(M0) = 0, and
vel(M ′

1) = vel(M1)−vel(M0). It can be easily observed that each mutual visible
intervals MV I( M (t)) has the same vertex set of MV I( M ′(t)) in all time
t ∈ T . This transformation above is corresponding to shear the kinetic space K
according −vel(M0). We call such a space a static space of M0(t), and denote it
by S0. A static space S1 of M1(t) is similarly defined. In each static space Si of
Mi(t), the objects Mi(t) is static, and hence is denoted by Mi. Without loss of
generality, we assume that y(vel(Mi)) = 0, x(vel(Mi)) = 0, y(vel(Mi+1)) = 0,
and x(vel(Mi+1)) ≥ 0. A projected space Pi of Mi(t) is two dimensional plane
which is obtained by projecting the 3-dimensional static space Si of Mi(t) on
the plane of t = 0. Figure 3 illustrates a projected space P0 of pentagon M0. We
denote by Ci the trajectory of the representative point ci of Mi in the kinetic
space K, by Pi(Ci+1) the image of the trajectory Ci+1 in the projected space Pi.
We assume that Pi(Ci+1) is horizontal and y(ci) > y(ci+1(t)). In the projected
space Pi, a line extended from each edge ei

j of Mi is called extension and denoted

by l(ei
j) or lij . Let Li = {lij|0 ≤ j < ni}. Then, every extension l(ei

j) ∈ Li is not

horizontal since ei
j is not horizontal. For a non-horizontal line l, a left (right)

plane of l is the half plane divided by l and has a point p ∈ R
2 having y-

coordinate y(p) = 0 and x-coordinate x(p) = −∞ (x(p) = ∞). A polygon M is
on the left(right) of a line l if M is contained on the left (right) plane of l. A



18 Y. Kusakari et al.

M 1

M 0

( ct  )1
M 1( ct  )2

M 1( ct  )m

P0

P0(C )1

Fig. 3. The projected space P0 of moving object Mo.

(a)

q q

p

p+

q

p

r

s

r

s

r

s
P C0 1(       )

t =

P C0 1(       ) P C0 1(       )

M M0 0

(b) t = tp (c) t =

M0

εt  -p t  + εp

1p+ 1

Fig. 4. Decreasing the visible interval of M0 around the changing time tp.

non-horizontal line l is on the left(right) of polygon M if M is on the right (left)
of l. Then, the following lemma holds.

Lemma 1. For any two times t, t′ ∈ T , (t < t′),

MV I(t) 6= MV I(t′)

if and only if the one of following conditions satisfies:

(p) There exists a time tp,t ≤ tp < t′, when an extension l(e0
j) ∈ L0 becomes

an iso-common tangent on the left of both M0 and M1(tp) in the projected
space P0;

(q) There exists a time tq,t < tq ≤ t′, when an extension l(e0
j) ∈ L0 becomes

an iso-common tangent on the right of both M0 and M1(tq) in the projected
space P0;

(r) There exists a time tr,t ≤ tr < t′, when an extension l(e1
j) ∈ L1 becomes an

iso-common tangent on the left of both M0(tr) and M1 in the projected space
P1;

(s) There exists a time ts,t < ts ≤ t′. when an extension l(e1
j) ∈ L1 becomes an

iso-common tangent on the left of M0(ts) and M1 in the projected space P1.

Proof. One can easily observe that mutual visible intervals MV I(t) changes only
if an extension becomes an iso-common tangent of Mi and Mi+1(t). Thus, we
only show the sufficiency in below.
(p): Let l(e0

j) be an extension of e0
j satisfying (p) at time tp, and MV I(tp) =

(p, q, r, s) be the corresponding mutual visible intervals. See Figure 4. Then,



Searching Mutual Visible Intervals on Moving Objects 19

p

q q

p p

rs rs rs

M0 M0 M0

P C0 1(       ) P C0 1(       ) P C0 1(       )

(a) (b) t = tq
(c)

q+ 1 q+ 1

q

t = t   - q ε t = t   + q
ε

Fig. 5. Increasing the visible interval of M0 around the changing time tq.

p = j and MV I(tp) = (j, q, r, s) since e0
j = (v0

j , v0
j+1). For t ∈ T , let lp(t) be the

left iso-common tangent of M0 and M1(t). Then, for a small real number ε > 0,
lp(tp − ε) touches v0

j at time tp − ε, and hence MV I(tp − ε) = (j, q, r, s). On

the other hand, the lp(tp + ε) touches another vertex v0
j+1 of e0

j at time tp + ε,

and hence MV I(tp + ε) = (j + 1, q, r, s). Thus, the visible interval V IM1
[v0

p, v0
q ]

decrease and turns into V IM1
[v0

p+1, v
0
q ].

(q): Let l(e0
j) be an extension of e0

j satisfying (q) at time tq, and MV I(tq) =
(p, q, r, s) be the corresponding mutual visible intervals. See Figure 5. Then,
q = j + 1 and MV I(tq) = (p, j + 1, r, s) since e0

j = (v0
j , v0

j+1). For t ∈ T , let lq(t)
be the right iso-common tangent of M0 and M1(t). Then, for a small real number
ε > 0, lq(tq − ε) touches v0

j at time tq − ε, and hence MV I(tq − ε) = (p, j, r, s).

On the other hand, the lq(tq +ε) touches another vertex v0
j+1 of e0

j at time tp +ε,

and hence MV I(tp + ε) = (p, j + 1, r, s). Thus, the visible interval V IM1
[v0

p, v0
q ]

increases and turns into V IM1
[v0

p, v0
q+1].

(r): The proof of this case is similar as the case (p). The r changes and the
interval V IM0

decrease if this case is occur.

(s): The proof of this case is similar as the case (s). The s changes and interval
V IM0

increase if this case is occur. Q.E .D.

This lemma 1 implies that the sort of mutual visible intervals are discrete
and finite. The changing time is the time when mutual visible intervals change.
We denote by CT ⊂ T the set of all of changing times. Let CTp, CTq,CTr,CTs

be the sets of changing times satisfying the condition of lemma 1(p), (q), (r),
(s),respectively, and let CT 0 = CTp ∪CTq, CT 1 = CTr ∪CTs. Note that CT =
CT 0∪CT 1 = CTp∪CTq∪CTr∪CTs. We assign the total order to CT according
to the natural order of time. The ordered set CT is denoted by (ct1, ct2, · · · , ctm),
where m is the number of changing times. For every k,1 ≤ k < m, mutual visible
intervals MV I(t) is the same during ctk ≤ t < ctk+1. Let MV Ik be the mutual
visible intervals MV I(t) during ctk ≤ t < ctk+1, let MV I0 be during t < ct1,
and let MV Im during ctm ≤ t. We denote the ordered set of mutual visible
intervals by MVI = (MV I0, MV I1, · · · , MV Im).



20 Y. Kusakari et al.

tct1 ct2 ctm

MVI 0 MVI 1 MVI 2 MVI MVIm-1 m

MVI

CT

Fig. 6. An MVI-tree stores CT and MVI.

4 MVI-tree

An mutual visible intervals search tree (MVI-tree) is a tree like data structures,
which stores each mutual visible intervals MV Ik ∈ MVI in leaves, stores each
changing time ctk ∈ CT in internal nodes, and enable to search MV I(t) for a
query time t ∈ T . The structure of internal nodes is called by an index part of an
MVI-tree, and can be constructed as a balanced tree such as a red-black tree[3].
Thus, every MV I(t) can be found in time O(log N) using an MVI-tree. Figure 6
illustrates an MVI-tree.

Now,we give an algorithm Construct MVI-tree for constructing an MVI-
tree as follows.

Construct MVI-tree

(T1) Find CT 0 = CTp ∪ CTq in the projected space P0 of M0;
(T2) Find CT 1 = CTr ∪ CTs in the projected space P1 of M1;
(T3) Find CT by merging CT 0 and CT 1;
(T4) Calculate the initial mutual visible intervals MV Ik0

= MV I(0) from the initial
configuration M (0) = {M0(0), M1(0)};

(T5) Calculate mutual visible intervals MV Ik ∈ MVI from MV Ik−1 or MV Ik+1 for
every k,1 ≤ k < m;

(T6) Construct MVI-tree from CT and MVI.

In below, we explain the detail of Construct MVI-tree.

4.1 Tangent Point search tree

Each CT i can be found by detecting tangent points vi+1
k of Mi+1(t) passed

by the extension lij ∈ Li. Using this property, a straightforward algorithm is

obtained as follows. For each extension lij ∈ Li of Mi, it finds tangent point vi+1
k

on Mi+1(t) by checking every vertex of Mi+1(t), and would take time O(ni+1).
Thus, it would take time O(n0n1) = O(N2) for finding CT i.

Our first idea is to construct an intermediate date structure called a tan-
gent point search tree (TP -tree) since many tangent points should be found.



Searching Mutual Visible Intervals on Moving Objects 21

We denote a tangent point search tree of Mi+1(t) by TP (Mi+1(t)). For two
points p1, p2 ∈ R

2, the angle θ(−−→p1p2) of a vector −−→p1p2 is measured counter-
clockwise at a point p1 from the +x-direction and ranges in [0, 2π). We may
omit (mod 2π) since every angle is ranges in [0, 2π). A normal vector n(ei+1

j )

of ei+1
j = (vi+1

j , vi+1
j+1) is a unit vector satisfying θ(n(ei+1

j )) = θ(
−−−−−−→
vi+1

j vi+1
j+1) −

π
2 .

Similarly, a normal vector n(l) of a line l is defined by two points p1, p2 ∈ l. For

each ei+1
j , a normal vector n(ei+1

j ) is perpendicular to an ordered edge
−−−−−−→
vi+1

j vi+1
j+1

and points outside of Mi+1(t). We assume, with out loss of generality, that the
angle θ(n(ei+1

0 )) of edge ei+1
0 is the minimum during all normal vectors of edges

ei+1
j . Then, the following lemmas obviously holds.

Lemma 2. For each edge ei+1
j of Mi+1(t), the following inequality satisfies:

θ(n(ei+1
0 )) < θ(n(ei+1

1 )) < · · · < θ(n(ei+1
ni−1)).

Lemma 3. In projected space Pi, a non-horizontal line l passing through a ver-
tex vi+1

k of Mi+1(t) is a tangent line of Mi+1(t) if and only if either (i) or (ii)
holds:

(i)
θ(n(ei+1

k−1)) ≤ θ(n(l)) ≤ θ(n(ei+1
k ))

(ii)
θ(n(ei+1

k−1)) ≤ θ(n(l)) + π ≤ θ(n(ei+1
k ))

.

By Lemma 2, we can assign the total order to the set of edges ei+1
j of Mi+1(t)

using the angle θ(n(ei+1
j )). Thus, the tangent point search tree TP (Mi+1(t))

stores all edges ei+1
j of Mi+1(t) according to the total order of the angles.

We insert every edge ei+1
j , 0 ≤ j < ni+1, to TP (Mi+1(t)) by calculating

the angle θ(ei+1
j ) as key. We construct TP (Mi+1(t)) as a balanced tree. Us-

ing TP (Mi+1(t)), we can find a tangent point vi+1
k touched by extension lij of

Mi in time O(log ni+1).

4.2 The detail of Construct MVI-tree

We first show the detail of steps (T1)-(T3). We denote by l(−−→p1p2) the line trans-
lated from l according to −−→p1p2. Then, the following algorithm Find CT i finds
CT i.

For Mi and Mi+1(t), there exist both iso-common tangent and hetero-common
tangent. Therefore, for each extension lij, two tangent points are found vi+1

k ,

vi+1
k′ by (CT3), one of which is the tangent point of iso-common tangent and

the other is one of hetero-common tangent. However, from the configuration
of the scene, we can determine which tangent point is one of the iso-common



22 Y. Kusakari et al.

Find CT i

(CT1) Construct a tangent point search tree TP (Mi+1(t)) of Mi+1(t);
(CT2) For each edge ei

j of Mi and its extension lij ∈ Li, execute the following (CT3)-
(CT5);

(CT3) Search on TP (Mi+1(t)) as keys θ(n(li+1

j )) and θ(n(li+1

j ))+π, and find tangent

points vi+1

k and vi+1

k′ , each of which is passed by a tangent line parallel to lij ;

(CT4) Calculate the crossing points cpk = lij(
−−−−−→
vi+1

k ci+1) ∩ Pi(Ci+1) and cpk′ =

lij(
−−−−−→
vi+1

k′ ci+1) ∩ Pi(Ci+1). (See Figure 7.) Determine which crossing points above
(cpk or cpk′) lies on the same side of lij as the representative point ci, and let cp∗

be such crossing point;
(CT5) Calculate the changing time ct when the representative point ci+1(t) reaches

the cross point cp∗, then insert ct to CT i.

P C0 1(       )

M0

v
k’
1

vk
1

cp
cp

k

k’

l j
0(      )v

k
1 c1l j

0

(      )v
k’
1 c1l j

0

Fig. 7. The relationship between an extension and a changing time.

tangent. These determination is done in (CT4). Figure 7 illustrates the rela-
tionship between an extension and a changing time. The set of changing time
CT 0 = CTp∪CTq = (ct01, · · · , ct0m0

) can be found by executing Find CT 0 in P0.
Similarly, CT 1 = CTr ∪ CTs = (ct11, · · · , ct1m1

) can be found by executing Find
CT 1 in P1. Each of these sets has the total order, and hence the total ordered
set CT = (ct1, · · · , ctm) = CT0 ∪ CT1 is obtained by merging CT 0 and CT 1,
where m0 = |CT 0|, m1 = |CT 1|, m = |CT |(= m0 + m1). This merging step can
be done in time O(|CT |) = O(N) [3].

In step (T4), iso-common tangents of M0(0), M1(0) can be found by typi-
cal geometric algorithm [6, 11, 13], and hence the initial mutual visible intervals
MV I(0) can be also found in time O(N).

Finally, we give the detail of steps (T5),(T6). Each changing time ctk ∈
CT = (ct1, · · · , ctm) is contained in the one of four subsets CTp, CTq, CTr,
CTs. These assignment can be found when Find CT i is executed. Thus, by
the proof of Lemma 1, each mutual visible intervals MV Ik can be calculat-
ing from MV Ik−1 or MV Ik+1. For example, if ctk ∈ CTp then MV Ik =
MV I(ctk + ε) = (p + 1, q, r, s) and MV Ik−1 = MV I(ctk − ε) = (p, q, r, s).
Note that MV Ik0

= MV I(0), and hence the following inequality is satisfied:
ctk0

≤ 0 ≤ ctk0+1. For any positive changing times ctk > ctk0
, we can calculate



Searching Mutual Visible Intervals on Moving Objects 23

every mutual visible intervals MV I(ctk) from MV Ik−1, and hence we can obtain
mutual visible intervals for positive changing times from MV Ik0

= MV I(0) to
MV Im = MV I(∞). Similarly, we can obtain mutual visible intervals for neg-
ative changing times from MV Ik0

= MV I(0) to MV I0 = MV I(−∞). Thus,
we can obtain MVI = (MV I0, · · · , MV Ik0

, · · · , MV Im), where MV I(−∞) =
MV I0 MV Ik0

= MV I(0), and MV Im = MV I(∞)). The MVI-tree can be con-
struct by inserting every ct ∈ CT as internal nodes and every MV Ik ∈ MVI as
leaf nodes.

4.3 Complexities

In this section, we analyze the complexity of the algorithm Construct MVI-
tree.

We first analyze the complexity of the algorithm Find CT i. A balanced tree
with m nodes can be constructed in time O(m log m) by inserting every nodes
to the empty tree, and it has height at most O(log m) [3]. Thus, a tangent point
search tree TP (Mi+1(t)) can be constructed in time O(ni+1 log ni+1) in (CT1).
In (CT2)-(CT5), every tangent points can be found in time O(log ni+1) since
TP (Mi+1(t)) has height at most O(log ni+1). Therefore, all tangent points of
CT i can be found in time O(ni log ni+1) since |Li| = ni. Therefore, the following
lemma holds.

Lemma 4. The algorithm Find CT i runs in time O(N log N) using space
O(N).

We next analyze the complexity of Construct MVI-tree. The following
lemma holds for the set CT of changing time.

Lemma 5. The set CT has at most O(N) elements.

Proof. In projected space Pi, each extension lij ∈ Li becomes an iso-common

tangent of Mi and Mi+1(t) exactly once, and hence |CT i| = |Li| = ni. Thus,
|CT | ≤ |CT 0| + |CT 1| = n0 + n1 = N . Q.E .D.

By lemma 4 and lemma 5, each set of changing time CT 0 and CT 1 is found
in time O(N log N) in (T1),(T2). The merging operation take linear time[3],
and hence CT can be found in time O(|CT |) = O(N) in (T3). The initial
mutual visible intervals MV I(0) is calculated in time O(N) in (T4) using typical
geometrical algorithm[6, 11, 13]. The set MVI of mutual visible intervals can be
found from CT and MV I(0) in time O(N) in (T5). Thus, an MVI-tree can be
constructed in time in time O(N log N) and has height at most O(log N) since
it is a balanced tree [3]. Therefore, the following theorem and corollary holds.

Theorem 1. The algorithm Construct MVI-tree constructs an MV I-tree in
time O(N log N) using space O(N). For any query time t ∈ T , mutual visible
intervals MV I(t) can be found in time O(log N) using the MV I-tree.

Corollary 1 Using an MVI-tree, a searching problem of moving objects M (t)
and the time set TF can be solved in time O((F + N) log N) using O(N) space,
where N = n0 + n1 and F = |TF |.



24 Y. Kusakari et al.

ct 1-(       ,MVI  )0

0 m
(       ,MVI  ) (       ,MVI    ) (     ,MVI    )m

1
ct 1 k

k

Fig. 8. An MVI-list.

5 MVI-list

An mutual visible search list is a sequential data structures which stores pairs
of changing time ctk ∈ CT and mutual visible intervals MV Ik ∈ MVI. Each
elements (ctk, MV Ik) of an MVI-list is stored according to the total order of the
changing time. Figure 8 illustrates an MVI-list. MV I(t) for a query time t can
be found by using “binary search algorithm” on the MVI-list, since an MVI-list
stores each element by the increasing order of time [3].

Now, we give an algorithm Construct MVI-list for constructing MVI-list
as follows.

Construct MVI-list

(L1) For every u ∈ {p, q, r, s}, construct u-list;
(L2) Construct MV I-list by merging p- q- r- s-lists.

The main idea of this algorithm is to find every subsets CTu, u ∈ {p, q, r, s},
of changing time CT separately. In below, we show only the algorithm for con-
structing p-list since the other three lists can be similarly found.

5.1 Constructing p-list

We first show additional lemmas for constructing p-list.

Lemma 6. Let v0
a be the vertex of M0 with maximum y-coordinate, and v0

b be
the vertex of M0 with minimum x-coordinate. Then, MV I(−∞) = (a, q, r, s),
MV I(∞) = (b, q, r, s), and every vertex v0

p is contained in the path from v0
a to

v0
b on B(M0) during t ∈ T = (−∞,∞).

Proof. One can easily observe that the angle of the left iso-common tangent line
ranges in (π, 2π) since M0 lies above P0(C1). Furthermore, obviously, the vertex
v0

a is passed by the tangent line l0a with the angle θ(l0a) = π when t = −∞, and
hence v0

a is one of the terminal of mutual visible intervals MV I(−∞). Similarly,
the vertex v0

b is passed by the tangent line l0b with the angle θ(l0b ) = 2π when
t = ∞. Moreover, every v0

p clearly appears between v0
a and v0

b . Thus, this lemma
holds. Q.E .D.

For each v0
p and e0

p = (v0
p, v0

p+1), a ≤ p ≤ b, let ct(v0
p) be the changing time

when the extension l(e0
p) ∈ L0 becomes the left iso-common tangent of M0 and

M1(t). Then, the following lemma satisfies.



Searching Mutual Visible Intervals on Moving Objects 25

M 1

M 0

( ct  )1 M 1( ct  )2

M 1( ct  )3

P0

P0(C )1

t

p1
v

p1
v

p2
v

p2
v

p3
v

p4
v

p3
v p4

v

va=

v= b

va= v= b

Fig. 9. Constructing p-list.

Lemma 7. For each vertex v0
p in the path (v0

a, · · · , v0
p, · · · , v0

b ), each changing
times ct(v0

p) increase according to increasing index p from a to b, that is, the set
CTp = ( ct(v0

a), · · · , ct(v0
p), · · · , ct(v0

b )) has the natural order of time.

Proof. For each p, a ≤ p ≤ b, the angle θ(e0
p) increase according to increasing

index p since M0 is a convex polygon. Therefore, each extension l(e0
p) intersects

the horizontal line P0(C1) by the increasing order of the x-coordinate. Moreover,
one can easily observe that every changing time appears by the increasing order.
See Figure 9. Q.E .D.

By Lemmas 6 and 7, we show the algorithm Construct p-list as follows.

Construct p-list

(P1) Find the vertex v0
a of M0 with the maximum y-coordinate, and find the vertex

v0
b of M0 with the minimum y-coordinate;

(P2) For each p, a ≤ p ≤ b, repeat the following (P3)-(P5);
(P3) Find the tangent vertex v1

s of M1(t) touched by the extension l(e0
p) from left, then

calculate the corresponding changing time ct(v0
p) from a left iso-common tangent

line v0
pv1

s ;
(P4) Add the pair (ct(v0

p), v0
p) to the last of p-list.

5.2 Complexities

In this subsection, we analyze the complexity of the algorithm Construct MVI-
list.



26 Y. Kusakari et al.

We first analyze the complexity of the algorithm Construct p-list. One can
easily find the vertex with maximum or minimum y-coordinate in time O(N),
and hence (P1) can be executed in time O(N). Every v0

p can be found by the
previous edge e0

p−1 = (v0
p−1, v

0
p) of M0. Furthermore, one can easily observe

that the tangent vertex v1
s of the left iso-common tangent line v0

pv1
s appears

counterclockwise in the vertex list of M1(t). Thus, by Lemma 7, the changing
time ct(v0

p) can be found in time O(1) in (P3). Thus, (P2)-(P4) can be executed
in linear time in total. Thus, the algorithm Construct p-list can be executed
in time O(N).

For the algorithm Construct MVI-list, (L1) can be done by executing
Construct u-list for every u ∈ {p, q, r, s}, and hence would take time O(N).
In (L2), the four-way merging technique should be used, and this can be done
in time O(N) [3].

Thus, the following theorem and corollary holds.

Theorem 2. The algorithm Construct MVI-list constructs an MV I-list in
time O(N) using space O(N). For any query time t ∈ T , the mutual visible
intervals MV I(t) can be found in time O(log N) using the MV I-list.

Corollary 2 Using the MV I-list, a searching problem of moving objects M (t)
and the time set TF can be solved in time O(N + F log N) using O(N) space,
where N = n0 + n1 and F = |TF |.

6 Conclusion

In this paper, we give several efficient methods for searching the mutual visible
intervals for the case where the trajectories of moving objects are known. We
give two data structures, called an MVI-tree and an MVI-list, if two convex
polygons M0, M1 moves by uniform motion. The algorithm Construct MVI-
tree constructs an MVI-tree in time O(N log N) using space O(N). Each mutual
visible intervals of an query time t can be found in time O(log N) by using an
MVI-tree, that is, by tracing a root-leaf path on the MVI-tree. The algorithm
Construct MVI-list constructs an MVI-tree in linear time using linear space.
Each mutual visible intervals of an query time t can be found in time O(log N)
using an MVI-list, that is by using the binary search algorithm on the MVI-list.

The following future works remain:

(1) develop methods for searching mutual visible surfaces of two convex poly-
topes in the space of three or more degree dimension,

(2) develop methods for searching mutual visible surfaces of moving objects
which may moves by non-uniform motion, and

(3) develop methods pairs of mutual visible surfaces among three or more mov-
ing objects,. . . .



Searching Mutual Visible Intervals on Moving Objects 27

References

1. P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-peled, J.
Hershberger, C. Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D.Metaxas, B.
Mirtich and D. Mount, Alogorithmic Issues in Modeling Motion, ACM computing
Surveys, 34 (4), pp. 550–572, 2002.

2. J. Bittner, Hierarchical Techniques for Visibility Determination, Postgraduate Study
Report DC-PSR-99-05, Czech Technical University, 1999.

3. T. H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms, MIT
press, Cambridge, MA, 1990.

4. S.Coorg and S.Teller, Real-time occlusion culling for models with large occluders,
SI3D: Proc. of Symp. on Interactive 3D graphics, New York, USA, ACM Press, pp.
83–ff, 1997.

5. R. Diestel, Graph Theory, Springer-Verlag, 1997.
6. M. deBerg, M. van Kreveld, M. Overmars and O.Schwarzkopf, Computational Ge-

ometry Algorithms and Applications, Springer-Verlag, 1997.
7. J. D. Foley, A. van Dan, S. K. Feiner and J.F. Hughes, Computer graphics:principles

and practice 2nd ed. in C, Addison-Wesley, 1991.
8. D. Gordon and S.Chen, Front-to-back display of BSP trees, IEEE Computer Graph-

ics and Applications, 11 (5), pp. 79–85, 1991.
9. Y.kusakari, Y.Sugimoto, J.Notoya, and M.Kasai, A Method for Searching Mu-

tual Visible-Intervals on Moving Objects, Proc. of DEWS 2006, 4B-oi3, 2006 (in
Japanese).

10. J.Notoya, Y.Sugimoto, Y.Kusakari, and M.Kasai, Visibility Search for Spatial

Database System, DBSJ Letters, 4 (2), pp. 9–12, 2005 (in Japanese).
11. J. O’Rourke, Computational Geometry in C, Cambridge, 1998.
12. J. M. Patel, Y. Chen, and V. P. Chakka, STRIPES: An Efficient Index for Predi-

cated Trajectories, Proc. of SIGMOD Conference 2004, Paris, France, pp. 637–646,
2004.

13. F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, 1985.

14. Y. Tao, D. Papadias and J. Sun, The TPR∗-Tree: An Optimized Spatio-Temporal

Access Method for Predictive Queries, VLDB, pp. 790–801, 2003.


