
A Quorum Based Distributed Mutual Exclusion

Algorithm for Multi-Level Clustered Network

Architecture

Mohammad Ashiqur Rahman1 and Md. Mostofa Akbar2

1 Military Institute of Science and Technology, Mirpur Cantonment, Dhaka
2 Bangladesh University of Engineering and Technology, Dhaka

Abstract. Different permission-based algorithms have been proposed
for the solution of the Mutual Exclusion problems. With the emergence of
peer-to-peer computing, the distributed applications spread over a large
number of nodes. Cluster-based solutions are scalable for large number
of participants. Some algorithms are proposed using cluster topology.
But the number of participating nodes is increasing everyday. So here
we propose a general permission-based solution for multi-level clustered
network. We also find the optimal level of clustering for an especial case.

1 Introduction

In distributed systems different processes are running on different nodes of the
networks and they often need to access shared data and resource, or need to
execute some common events. Their uses should be consistent and so any access
to them should be mutually exclusive. The portion of an event or application,
where any shared components or common events are needed to be used, is the
Critical Section (CS). Mutual Exclusion (ME) algorithms ensure the consistent
execution of CS. As the shared memory is absent in distributed systems the
solutions of the ME problem is not straight forward. Due to the enormous im-
portance of ME and the difficulty of its solution, this is an extensive research
area since last three decades. The classic algorithms for Mutual exclusion that
have been proposed for fixed networks can be classified in two types: centralized
and distributed approaches. In the centralized solutions a node is designated
as coordinator to deliver permission to the other nodes to access their Critical
Section (CS) while in the distributed solutions the permission is obtained from
consensus among all network nodes.

On the distributed systems, distributed mutual exclusion algorithms are
mainly classified in two categories: token based [1–3] and permission based [4–7].
Permission based mutual algorithms impose that a requesting node is required
to receive permissions from other nodes (a set of nodes or all other nodes). In the
token-based mutual exclusion algorithms, a unique token is shared among the set

M. Kaykobad and Md. Saidur Rahman (Eds.): WALCOM 2007, pp. 121–135, 2007.



122 M. A. Rahman and M. M. Akbar

of nodes. The node holding the token is allowed to enter its critical section. The
basic idea of token-based algorithms is simple: a node must own the unique token
(sometimes cited as privilege message) before entering the CS. So, in the best
case, no communication is necessary since the token may be available locally.
Otherwise, a mechanism is needed to locate the token. In [2], a spanning tree
of network for locating the token is used and it shows that the average number
of messages exchanged in this protocol is O(log n). But token-based algorithms
suffer from poor failure resiliency. In particular, if the node holding the token
fails, complex token regeneration protocols must be executed [8].

Ricart and Agrawala proposed the fair algorithm [4] that needs 2(n−1) mes-
sages for a node to use the critical section. This algorithm is the first permission-
based ME algorithm where a node need to collect permission from all other nodes
for CS access. Though the algorithm is deadlock and starvation free, it is vulner-
able to node and communication failures and it is expensive in communication
cost too.

There is elegant class of permission-based algorithms [7] that use concept of
quorums to achieve mutually exclusive access of CS. A node needs to achieve
permissions from all of the nodes of a quorum to access CS. Quorum based
algorithms are resilient to node and communication failures and often network
partitioning and usually have lower communication cost. Communication cost of
these algorithms is proportional to the quorum size. Therefore these algorithms
try to achieve the two goals: small quorum size with high degree of fault tol-
erance. Its basic idea is to collect enough permission (votes) to guarantee the
mutual exclusion. The majority quorum algorithm [13] can be considered as the
first algorithm of this kind, where to attain mutual exclusion a node must obtain
permission from a majority of nodes in the network. Maekawa [5] proposed an
ME algorithm by imposing a logical structure on the network. In this scheme, a
set of nodes is associated with each node, and this set has a nonempty intersec-
tion with all other sets corresponding to the other nodes, which guarantee the
ME. The size of each of these sets is

√
n and so the algorithm costs

√
n order.

Garcia-Molina and Barbara [14] have properly defined the concept of quo-
rums with the notion of coterie. A coterie is a set of sets with the property that
any two members of a coterie have a nonempty intersection. Combining the idea
of logical structures and the notion of coteries an efficient and fault tolerant quo-
rum generation algorithm for ME is proposed by Agrawal and Abbadi [6]. Here
the nodes form a logical binary tree which is used to generate quorums. The
quorum forming in this algorithm is recursive. It can be regarded as attempting
to obtain permissions from nodes along a root-to-leaf path. If the root fails, then
the obtaining permissions should follow two paths: one root-to-leaf path on the
left subtree and one root-to-leaf path on the right subtree. The algorithm toler-
ates both node failures and network partitions while in the best case incurring
logarithmic costs considering the size of the network. But the cost increases with
the increase of node failures.

However, at present the number of distributed nodes has become very large.
And with the emergence of peer-to-peer computing, the distributed applications



A Quorum Based Distributed Mutual Exclusion Algorithm 123

have been spread over a large number of nodes. Again the latency gaps, between
nodes interconnects, are very important issue. So number of nodes participating
in any application as well as their location is crucial. But the classical algorithms
illustrated above do not consider these matters. So, algorithms that reduce the
number of participating nodes are needed.

Sometimes the nodes in a network are divided into several groups where
each group is often called a cluster. According to this concepts some group based
hybrid ME solutions [8, 9] are proposed. Actual goal of these proposed algorithms
was to combine two different approaches in different layers- intra-group and inter-
group. Two distributed ME solutions are presented by Erciyes [10] using a logical
structure where clusters are arranged on a ring. In [11] Bertier proposed two
token-based algorithms taking into account the hierarchical network topology,
which reduce both latency cost and number of message. But these three solutions
are modification of Naimi’s token-based algorithm [3] for proxy-based cluster.
As these algorithms are basically token-based, they suffer due to token failure.
However, all of the above algorithms use two-layer network topology and run
algorithm inside the cluster and among the clusters so that mutually exclusive
access prevails. Though the number of participating nodes is reduced in the above
approaches and so the cost, it is not sufficient according to the present situation.
The networks are continuously growing and so they are becoming larger and
larger day by day.

Here, we propose a multi-level clustered network architecture and give a
general distributed ME solution based on this proposed network. It improves the
performance by reducing participating nodes in ME algorithm. The algorithm
for achieving ME is extension to that of [5] and [6]. Due to the hierarchical
network structure we incorporate a coordination algorithm with the algorithm
as well as modify the format of the messages. In section II we describe the
proposed network architecture. In section III, the ME algorithm followed by
its analysis is illustrated. Section IV includes the theoretical analyses of the
algorithm. Performance analysis is given in section V.

2 Proposed Network Architecture

2.1 Description of the system

The distributed system is a collection of nodes where each node will execute
a process. These nodes communicate by exchanging messages. A logical chan-
nel connects each pair of nodes. Communication will be taken as reliable. The
message delay is finite. Moreover, each channel is assumed to have infinite ca-
pacity, and to be FIFO (First-In First-Out). The processes fail in accordance
with Fail-Stop model [15].

2.2 Network Architecture

The nodes in a network are partitioned into several nonintersecting groups. Each
group is often called a cluster. In multilevel clustering, within a cluster, the nodes



124 M. A. Rahman and M. M. Akbar

can form some smaller clusters again and so forth. In the multilevel clustering,
Level of Clustering is introduced. Another important feature is Message Router
which plays an important role in the proposed algorithm.

Level of Clustering: Here l-level of clustering is proposed where l can be
any positive integer number. Figure 1, presenting in the next page, shows the
topology for 2-level of clustering. In the figure, P, Q and R act as Level 1 clusters
while A, B and C act as Level 2 clusters. A collection of nodes forms a Level l
cluster. A collection of nodes forms a Level l cluster. And a collection of Level l
clusters forms a Level (l− 1) cluster and so on. Level 0 is considered as a cluster
with whole network in this research. In the figure 1, P, Q and R form the Level
0 cluster. There is one and only one cluster at level 0. It is the topmost cluster
and so can be called as root cluster. Level l clusters are the bottommost clusters
and so can be called as leaf clusters.

Fig. 1. A network with 2-level of clustering.

If the l is 0, then there is only one cluster with all the nodes of network. So
in this case, we can say that no clustering is done to the network. The number
of clusters at a level decreases from l to 0 Level. However, l-level of clustering
forms a hierarchical structure of nodes.

Message Router: In each cluster of any level (l>0) there is a message router,
representing the cluster. In the figure 1 the message routers of the Level 2 clusters
(all A, B and C clusters) are surrounded by two circles while the message routers
of the Level 1 clusters (P, Q and R) are surrounded by single circle. The main and
only task of a message router is to represent the cluster at upper level cluster and
according to this role to communicate between different clusters. As some Level
k + 1 clusters form a Level k cluster, the members of a Level k cluster are also
some clusters. However, in this k cluster not all the nodes of the member clusters
but only their message routers play for their associated clusters. Therefore, it
can simply be said that the Level k cluster is made up with the message routers



A Quorum Based Distributed Mutual Exclusion Algorithm 125

of some Level k + 1 clusters. Level 0 cluster needs no message router as this is
the only cluster in this topmost level. Actually if any information is needed to
transmit from a cluster of a level to a cluster of different level then it is done
through the message router.

3 Proposed Solution

We now present the brief outline of the proposed algorithm followed by a de-
tailed description of the algorithm along with the state diagram of the proposed
algorithm.

3.1 Brief Outline

Here the Mutual Exclusion Algorithm is executed in different level of clusters.
In each level a cluster participates. Inside a cluster a classic ME algorithm runs.
Any algorithm, whether centralized or distributed, is applicable here. A simple
Coordination Algorithm is proposed to communicate between the executions of
ME algorithm at different levels. Message routers play the main role here. How-
ever, how the ME algorithm works using the coordination algorithm is written
below:

– Requests are generated at Level l clusters. These requests are processed in
different levels, Level l to Level 0 sequentially. The ME algorithm is run in
a cluster at each level. The selected cluster at each level is the one in which
the requesting node falls. However the root cluster, the only cluster at Level
0, plays for each request.

– The CS requesting node first executes ME algorithm in the cluster, a Level
l cluster, in which it falls. If its request is granted in this cluster it sends
a special request to the message router of the cluster if and only if there
are upper levels of clusters. The request is passed to the Level l − 1 cluster,
in which that Level l cluster falls, through the message router for further
processing. The message router will process the request in Level l − 1 level
by executing the ME algorithm.

– When the message router gets the request (a special request only to a mes-
sage router) from one of the nodes of its cluster, Level k (0 ≤ k ≤ l) cluster,
it runs ME algorithm for the request in the immediate upper level cluster,
Level k − 1 (k − 1 ≥ 0) cluster, to which it is a member. Note that, the
message router may also be a member of that Level k cluster. However, in
Level k−1 this message router is now the requesting node. If the permission
is granted here then the requesting node will place the request to the higher
level cluster, Level k−2 cluster if any (k−2 ≥ 0), through the message router
of this cluster. This process continues until the Level 0 cluster is reached.

– When a node requests it needs permission from two sides in two sequential
steps: first from the nodes of its cluster and next from upper level through
message router. If there is no upper level then only the consensus from same



126 M. A. Rahman and M. M. Akbar

level is required. After getting total consensus a node of Level k sends a
special reply downward to the requesting node of the Level k + 1 (k + 1 ≤
l) cluster. In this way the reply reaches the requesting node at Level l, the
actual requestor. Now the requesting node has the total consensus and so it
executes the CS mutual exclusively.

– After execution of CS, the requesting node sends release messages to the
nodes inside its cluster, Level l cluster. In the mean time it also sends a
release message to its message router. When the message router, which is a
member of a Level k cluster, gets release from a node of a Level k+1 cluster,
it sends release messages to the member nodes of its Level k cluster. If Level
k−1 cluster exists (k−1 ≥ 0), then it sends a release message to its message
router to transmit the release to upper Level.

3.2 Messages and Node States

Message types are depends basically on the classic algorithm that run in a clus-
ter. Naturally they are Request, Reply, Release, Inquire and Yield [6].
Inquire and Yield both used for distributed algorithms only. However, as here
the proposed algorithm run in different levels of clusters and a single node (es-
pecially message router) may play in several levels, an important data, Level No,
is also added with the usual parameters for these messages. Level No is the level
number of the cluster in which the messages are being used.

The communication between the member nodes of a cluster and the message
router of this cluster is done through SRequest, SReply and SRelease mes-
sages. When a node x gets the CS consensus from its cluster, Level k cluster,
then it sends SRequest message to its message router y to process the request
in the immediate higher level, Level k−1, cluster. Note that, the message router
is a member of Level k−1 cluster. Message router y sent back SReply to the re-
questing cluster node x if it has the total permission, permission from inside the
cluster as well as the permission from the upper level if any. SRelease is sent
to the message router from the cluster node to propagate the release message to
upper Level.

All of the messages have almost the same format as follows:
Message (Source, Level, Timestamp)

According to message types different types of messages are used. The parameter
Level is used for the no of Level of the cluster in which the sender node is acting.
Source has the id of the node which sends the message to a destination node. And
Timestamp contains the logical timestamp of the message [12]. It is important
for Request message for ordering the requests to avoid deadlock and starvation.
For other messages, this parameter has no importance and so can be omitted.

Each node may be in the following states at different levels:

– REQUESTING [0. . . l]: Here l is the Level of Clustering. This state at a level
is set when a node sends Request to other nodes in a cluster of that level.
The node remains in this state until it gets necessary replies from a quorum.



A Quorum Based Distributed Mutual Exclusion Algorithm 127

– LOCKED [0. . . l]: This state at a level is set when a node sends Reply

against a request of the same level to a node and remains in this state until
it gets a Release message from that node.

– BUSY [0. . . l]: When a requesting node at a level gets consensus in both
ways, those are, from its cluster of that level and from the upper level, this
state is set.

– CREQUESTING [0. . . l]: When a requesting node at a level gets necessary
consensus from its cluster of that level, it sends CRequest to its message
router for upper level consensus, if any, and sets this state for this level.

– INQUIRING [0. . . l]: If a node x gets request from a node y at a level which
has less timestamp than a earlier received request and that is already replied,
then x node sends a Inquire message to y, as well as, sets the state for this
level.

3.3 State Diagram

Fig. 2. State Diagrams, (a) and (b), for the proposed algorithm

State diagram of our proposed algorithm is very simple. Here a node faces two
different state transitions while participating at any level. One, as in figure 2(a),
happens at the time of requesting for CS for own self or on behalf of others
as message router. Other state transition, as in figure 2(b), occurs at the time
of giving consensus to a requesting node. Description of the different states is
already given in above sections. But two new states: IDLE1 and IDLE2 are
introduced here. When a node is not in REQUESTING or CREQUESTING or
BUSY states, that node is in IDLE1 state. And when a node is not in LOCKED
state the node is in IDLE2 state. The most important thing is that, a node



128 M. A. Rahman and M. M. Akbar

possesses a state of figure 2(a) and a state of figure 2(b) at the same time. And
both sides’ state transitions are occurred independently to each other.

All the state transitions, shown by number in figure2, are briefly described
below by citing the conditions which make the state change and the actions
which are executed at the time of state change.

– State transition 1: There are two cases to initiate the state transition.
• A node needs to use CS by itself
• It gets CRequest from a node because of being message router

Action: The node sends Requests to the nodes of a quorum, selected among
the nodes of its cluster and so gets into REQUESTING state.

– State transition 2: A REQUESTING node gets Reply message from the
nodes of the requesting quorum.

– State transition 3: A REQUESTING node gets the Reply messages from
all of the nodes of the quorum. Again, the acting cluster level of the node
is not the topmost level, that is, there is at least a level up of this level.
Action: The REQUESTING node sends CRequest to the message router
of its cluster and so gets into CREQUESTING state.

– State transition 4: A CREQUESTING node gets the CReply message from
the message router. Action: The node is now in the BUSY state. Two differ-
ent cases effect the other input actions.
• Case 1: If the level of the requesting node is equal to level of clustering,

then the node starts to use CS.
• Case 2: The node is acting as message router and so sends CReply

downward to the CREQUESTING node.
– State transition 5: A REQUESTING node at a level gets the Reply messages

from all of the nodes of the quorum. Again, the acting cluster level of the
node is the topmost level, that is, the level is 0. Action: The node gets into
the BUSY state. There are two cases here which effect the input action.
• Case 1: If the level of clustering is also 0, then the node starts to use CS.
• Case 2: The node is acting as message router and so sends CReply

downward to the CREQUESTING node.
– State transition 6: There are two cases to initiate this state transition from

BUSY state to IDLE1 state.
• Case 1: The node at bottommost level finishes its CS use
• Case 2: The node, at upper levels than bottommost level, gets CRelease

from a node because of being message router.
Action: The node is now IDLE1 state. Input actions depend on two different
cases.
• Case 1: The node is at the topmost level. So, it only sends Release

messages to the nodes of the quorum.
• Case 2: The node is at levels other than the topmost level. So, it sends

Release messages to the nodes of the quorum as well as sends CRe-

lease message to the message router of its cluster.
– State transition 7: When a node has a Request of a node, the state tran-

sition from state IDLE2 to LOCKED is happened. Action: The node sends
a Reply to the REQUESTING node.



A Quorum Based Distributed Mutual Exclusion Algorithm 129

– State transition 8: There are two cases to initiate this state transition from
LOCKED state to IDLE2 state.
• Case 1: When the node receives a Release or Yield message from the

locking node.
• Case 2: When the node receives a Yield message in reply of a Inquire

message from the locking node.

3.4 Correctness Proof

Here we first prove the correctness of the algorithm for single level of clustering
and using quorum based algorithm, tree-quorum algorithm, as a classic algorithm
in any cluster. As the level is single that is there are two levels of clusters: Level 1
clusters and Level 0 cluster. In a Level 1 cluster, the member nodes of the cluster
will participate in the ME algorithm while in Level 0 cluster, the members of
this cluster, that is, the message routers of those Level 1 clusters will participate.
In a simple view, we can say that, the ME algorithm will run in two level: inter a
Level 1 cluster between its member nodes and inter the Level 0 cluster between
the message routers of Level 1 clusters. Before proving correctness, we need to
cite the following intersection property:

The Intersection Property: If g and h are quorums in C, then g and h must
have a nonempty intersection, i.e., g ∩ h 6= φ.

In Agrawal and Abbadi [6], the intersection property is proved for tree-
quorum. Now we will show how our proposed algorithm satisfies above cor-
rectness property of mutual exclusive access of a resource.

Theorem 1. No two nodes are simultaneously in CS

Proof. In a Level 1 cluster tree-quorum algorithm is used. So here the quorums
satisfy the intersection property. Similarly in the Level 0 cluster, that is, between
the message routers, tree-quorum algorithm is used and so the intersection prop-
erty is also maintained here.

The proposed algorithm runs level wise, bottom to upward, and sequentially.
Here a node needs to have consensus from two different quorums sequentially,
first one is from the members of a Level 1 cluster and later one is from the mem-
bers of the Level 0 cluster. So, a quorum according to this proposed algorithm is
the combination of these two sub-quorums. We name this quorum combination
as total-quorum.

Now, all the total-quorums are formed similarly here and each of them must
have a quorum generated from the members of the Level 0 cluster. Therefore,
each of any two total-quorums must have a quorum from the Level 0 cluster
and according to the intersection properties of the tree-quorum algorithm there
should be an intersection between these two quorums of Level 0 and so these
two total-quorums have an intersection. So, the intersection property is satisfied
by the proposed algorithm for single level of clustering.

However, for all level of clustering there is a Level 0 cluster and so any total-
quorum has a quorum from this cluster. And thereby the intersection property
is satisfied by the proposed algorithm for l-level of clustering. Q.E .D.



130 M. A. Rahman and M. M. Akbar

4 Algorithm Analysis

Here the analysis of the proposed algorithm is presented taking the tree-quorum
algorithm [6], as the classic algorithm, which runs in the clusters of any level.
Message cost is proportional to quorum size. If n is the number of nodes of the
network and f is the probability of a node to be available to form a quorum
then according to tree-quorum algorithm the following power equation is found
for cost (c).

ch =
(2 − f)h − f

1 − f
when f 6= 0 (1)

or ch = h + 1 when f = 0 (2)

Here, height of the tree (binary tree), h = log2 (n + 1) − 1. Approximately,
h = log2 n − 1 for large n.

4.1 Optimal Cluster Size

Let the level of clustering is 1. So two levels of clusters: Level 1 cluster and Level
0 cluster, the cluster of Level 1 clusters. Now let the following parameters:

– The number of nodes in the network, n.
– Cluster size of each of the Level 1 clusters, C. So the number of Level 1

clusters is n/C. And this is the cluster size of the Level 0 cluster.
– Height of the tree made up with the whole network is h = log2 n − 1. And

Level of the tree composed by the clusters’ message routers in the Level 1
cluster is h′ = log2 C − 1.

Taking the derivative of cost (according to the equation 1 and h′) we get the
optimal value of h′ and so C, that is, C =

√
n. So the size of Level 0 cluster is

also
√

n. In 1-Level of clustering, cluster sizes of the clusters of both levels are
equal, square-root of the network size, for optimality.

Remarks: The cluster size is inversely proportional to the number of clusters,
that is, the cluster size of Level 1 cluster is inversely proportional to that of
Level 0 cluster. As the cost equation is exponential and same equation is used
in both levels, for optimality both levels try to minimize its size and ultimately
set to the point where both cluster sizes are same. The optimal value of C,

√
n,

suggests the same thing, that is, the cluster sizes of both levels are same. This
prove is done for 1-level of clustering. We can easily extend this concept for l
level of clustering and so have a lemma.

Lemma 1. For optimality, the cluster sizes of different Level of clusters are

same for l level of clustering.



A Quorum Based Distributed Mutual Exclusion Algorithm 131

4.2 Optimal Level of Clustering

For l level of clustering on n number of nodes, according to the Lemma 1 we
take that n = Cl + 1. This means, at first the n is partitioned into C number of
clusters. So each cluster contains n/C nodes in average. Then in each cluster, the
n/C nodes are partitioned again into C clusters. So, at this level, the clusters will
have n/C2 nodes each. This clustering process will continue up to the l times of
clustering and at last bottommost clusters will contain n/Cl nodes each. Now we
will find the optimal value of l for the value n using the tree-quorum algorithm.
However, in l level of clustering there are different clusters at different l + 1
levels each with cluster size C. The proposed algorithm runs the tree-quorum
algorithm in a cluster at each level and so in total the tree-algorithm runs in
l + 1 clusters.

Now, let h is height of the tree formed by whole network, that is, n nodes
and h+1

l+1 − 1 is the height of the tree formed in each cluster by C participating

nodes. According to the equation 1 the total cost is c =
∑l+1

1
(2−f)

h+1
l+1

−1
−f

1−f
+

Layer to Layer communication cost

or c = (l+1)(2−f)
h+1
l+1

−1
−(l+1)f

1−f
+ l

Taking the derivative of the above equation we get the optimal value of l:

l =
(h + 1) ln 2 − f

1 + k
− 1 (3)

An equation solving tool, ”DeadLine” is used to find out k. Approximate value
of k is 0.46306 ∗ (1 − f) − f . However, this optimality of l is valid for f < 1. If
f = 1, then optimal value for l is 0, that is, theoretically no clustering in needed.

4.3 Analytical Result and Associated Findings

Here we present two different graphs showing different level of clustering and
the optimal level of clustering according to our optimal solution. Figure 3 shows
the expected quorum size for different level of clustering taking a fixed f , the
probability of a node being alive, and variable node sizes. And figure 4 also shows
the same thing but taking a fixed node size, n, and variable values for f .

According to figure 3 we find that the optimal level of clustering, based on
the equation 3, for different value of n is almost correct. Again, we see that
the high level of clustering is good for large number of nodes while low level of
clustering is suitable for small number of nodes. However, the cost reduces much
when we use clustering for an n. But further increase in level of clustering does
not show such change.

In figure 4 we see that the high level of clustering is good for lower values
of f while low level of clustering is suitable for high values of f . However, the
cost reduces much when we use clustering for an f less than 1. But if there is
no unavailability of any node (f=1) to form a quorum, then no clustering gives
optimal message cost.



132 M. A. Rahman and M. M. Akbar

Fig. 3. Comparison between different levels of clustering changing n (f=0.9).

Fig. 4. Comparison between different levels of clustering changing f (n=1000).



A Quorum Based Distributed Mutual Exclusion Algorithm 133

5 Simulation Result

Fig. 5. Impact of various n on Optimal Point of Level of Clustering (f=0.80).

We have done the simulation using parsec. Here the result we have found is
almost similar to our analytical findings. In figure 5 the impact of n on the level
of clustering is shown. From here we find that, if n increases the higher level of
clustering performs better.

Fig. 6. Impact of different f on Optimal Point of Level of Clustering (n=400).

In figure 6 the impact of f is plotted against message cost. It shows that if
f is high then lower level of clustering is preferable. However, in these figures
we have seen that, the graph for higher level of clustering (such as 3-Level of
clustering) performs poor for lower number of nodes at lower value of f although
for lower value of f higher value for level of clustering is found to be suitable.
This abrupt behavior is happened due to the failure of message routers. Because
selecting another message router takes necessary cost.



134 M. A. Rahman and M. M. Akbar

6 Discussion

Here we have proposed a multi-level clustered architecture for the quorum based
distributed solution of mutual exclusion problems. The proposed algorithm is
general as this sense that any types of algorithm, centralized or distributed,
quorum-based or token-based, can easily be executed in a cluster at any level.
We have given some analytical results of the algorithm. As the number of the
users and the applications in distributed system is increasing day by day and
the growth rate is really high, algorithms using multi-layer network topology will
become important very soon. Again algorithms, like this, are suitable for ad-hoc
networks too.

References

1. Banerjee, S., K. Chrysanthis, P.: A New Token Passing Distributed Mutual Exclu-
sion Algorithm. Proceedings of the 16th ICDCS (1996) 717–724

2. Raymond, K.: A Tree based Algorithm for Distributed Mutual Exclusion. ACM
Transactions on Computer Systems (1989) Vol. 7 No. 1 61–77

3. Naimi, M., Trehel, M., Arnold, A.: A log (N) distributed mutual exclusion al-
gorithm based on path reversal. Journal of Parallel and Distributed Computing
(1978) Vol. 34 No. 1 1013–1015

4. Ricart, G., K. Agrawala, A.: An Optimal Algorithm for Mutual Exclusion in Com-
puter Networks Communications of the ACM (1981) Vol. 24 No. 1 9–17

5. Maekawa, M.: A N Algorithm for Mutual Exclusion in Decentralized Systems.
ACM Transactions on Computer Systems (1985) Vol. 3, No. 2 145–159

6. Agarwal, D., El Abbadi, A.: An Efficient and Fault-Tolerant Solution for Dis-
tributed Mutual Exclusion. ACM Transactions on Computer Systems (1991) Vol. 9
No. 1 1–20

7. C. Saxena, P., Rai, J.: A survey of permission-based distributed mutual exclusion
algorithms. Elsvier Science Publishers B. V. (2003) Vol. 25 No. 2 159–181

8. E. K. Mamun, Q., Ali, M., M. Masum, S., A. R. Mustafa, M.: A Two-Layer Hy-
brid Algorithm for Achieving Mutual Exclusion In Distributed Systems. WSEAS
Transactions on Systems (2004) Vol. 3 No. 3 1193–1198

9. Housni, A., Trelhel, M.: Distributed Mutual Exclusion Token-Permission based
by Prioritized Groups. Proceedings of the ACS/IEEE International Conference on
Computer Systems and Applications (2001) 253–259

10. Erciyes, K., Ali, M., M. Masum, S., A. R. Mustafa, M.: Distributed Mutual Ex-
clusion Algorithms on a Ring of Clusters. ICCSA, SV-Lecture Notes in Computer
Science (2004)

11. Bertier, M., Arantes, L., Sens, P.: Distributed Mutual Exclusion Algorithms for
Grid Applications: a Hierarchical Approach. Journal of Parallel and Distributed
Computing (JPDC), Elsevier (2006) Vol. 66 128–144

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM (1978) Vol. 21 No. 7 558–564

13. H. Thomas, R.: A majority consensus approach to concurrency control. ACM
Transaction on Database System (1979) Vol. 4 No. 2 180–209

14. Garcia-Molina, H., Barbara, D.: How to Assign votes in a Distributed System.
Journal of the Association for Computer Machinery (1985) Vol. 32 No. 4 841–860



A Quorum Based Distributed Mutual Exclusion Algorithm 135

[15] Schlichting, R.D. and Schneider, F.B.: ”Fail-stop processors: an approach to
designing fault-tolerant computing systems,” ACM Trans. on Computing Systems,
Vol. 1, No. 3, pp. 222-238, 1983.

15. D. Schlichting, R., B. Schneider, F.: Fail-stop processors: an approach to design-
ing fault-tolerant computing systems. ACM Transactions on Computing Systems
(1983) Vol. 1 No. 3 222–238


