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Abstract

Due to the recent growth in the demand of mobile communication services in
several typical environments, the development of efficient systems for providing
specialized services has become an important issue in mobile communication
research. An important sub-problem in this area is the base-station placement
problem, where the objective is to identify the location for placing the base-
stations. Mobile terminals communicate with their respective nearest base sta-
tion, and the base stations communicate with each other over scarce wireless
channels in a multi-hop fashion by receiving and transmitting radio signals.
Each base station emits signal periodically and all the mobile terminals within
its range can identify it as its nearest base station after receiving such radio
signal. Here the problem is to position the base stations such that each point
in the entire area can communicate with at least one base-station, and total
power required for all the base-stations in the network is minimized. A different
variation of this problem arises when some portions of the target region is not
suitable for placing the base-stations, but the communication inside those re-
gions need to be provided. For example, we may consider the large water bodies
or the stiff mountains. In such cases, we need some specialized algorithms for
efficiently placing the base-stations on the boundary of the forbidden zone to
provide services inside that region.

In our model, all the k base-stations are similar; in other words, their
range/power-requirement are same. We shall consider two variations of the prob-
lem where the region P and the number of base-stations k are given a priori.

region-cover(k): Place the base-stations on the boundary of P to cover the
entire region P .

vertex-cover(k): Place the base-stations on the boundary of P to cover the
vertices of P .

We first present a polynomial time algorithms for the vertex-cover(2) and
region-cover(2) problems, where the base-stations may appear any where on the
boundary of P . We also show that, if a pair of edges of the polygon is specified on
which the base-stations can be installed, then the vertex-cover(2) and the region-
cover(2) problems can be optimally solved in polynomial time. More specifically,
the time complexity of these two problems are O(n log n) and O(n2) respectively.
Next, we consider a restricted version of both the problems where all the k (≥ 3)
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base-stations can be placed on an edge of P . The objective is to minimize the
(common) range of the base-stations. Our proposed algorithm for the restricted
vertex-cover(k) problem produces optimum result in O(min(n2, nk log n)) time,
whereas the algorithm for the restricted region-cover(k) produces an additive ǫ

approximation result in the sense that if ρ is the optimum solution, then our
algorithm returns a value less than or equal to ρ+ ǫ. The time complexity of our
algorithm is O(n log Π

ǫ
), where Π is the perimeter of the polygon P . Finally, we

will describe a heuristic algorithm for the unrestricted region-cover(k) problem,
where k ≥ 3. Experimental results demonstrate that our proposed algorithm
runs fast and produces near optimum solutions.
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Abstract. Given a poset P , several algorithms have been proposed for
generating all linear extensions of P . The fastest known algorithm gen-
erates each linear extension in constant time “on average”. In this paper
we give a simple algorithm which generates each linear extension in con-
stant time “in worst case”. The known algorithm generates each linear
extension exactly twice and output one of them, while our algorithm
generates each linear extension exactly once.

1 Introduction

A linear extension of a given poset P is one of the most important notion asso-
ciated with P . An example of a poset is shown in Fig. 1, and its linear extension
is shown in Fig. 2. Many scheduling problems with precedence constraints are
modeled by a linear extension of a poset, or equivalently a topological sort[C01]
of an acyclic digraph [PR94]. Even though many such scheduling problems are
NP-complete, one can solve the problem by first generating all linear extensions
of a given poset and then picking the best one [PR94]. Linear extensions are
also of interest to combinatorists, because of their relation to counting problems
[St97].

Let P = (S, R) be a poset with a set S and a binary relation R on S. We
write n = |S| and m = |R|. It is known one can find a linear extension of a given
poset P in O(m + n) time [C01, p.550].

Many algorithms to generate a particular class of objects, without repetition,
are already known [LN01,LR99,M98,N02,R78]. Many excellent textbooks have
been published on the subject [G93,KS98,W89]. Given a poset P , three algo-
rithms to generate all linear extensions of P are explained in [KV83]. The best
algorithm among them generates the first linear extension in O(m + n) time,
then generates each linear extension in O(n) time.

Generally, generating algorithms produce huge outputs, and the outputs
dominate the running time of the generating algorithms. So if we can com-
press the outputs, then it considerably improves the efficiency of the algorithms.
Therefore many generating algorithms output objects in an order such that each
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object differs from the preceding one by a very small amount, and output each
object as the “difference” from the preceding one. Such orderings of objects are
known as Gray codes [J80,R93,R00,S97].

Let G be a graph, where each vertex corresponds to each object and each edge
connects two similar objects. Then the Gray code corresponds to a Hamiltonian
path of G. For the set LE(P) of all linear extensions of a given poset P we can
also define such a graph G. However, the graph G may not have a Hamiltonian
path. Therefore the algorithm in [PR94] first constructs a new set S

′

so that if
x ∈ S then +x,−x ∈ S

′

, then prove that the graph G
′

corresponds to S
′

always
has a Hamiltonian path. Based on this idea, the algorithm in [PR94] generates
the first linear extension in O(m + n) time, then generates each linear extension
in only O(1) time on average along a Hamiltonial path of G

′

. Note that the
algorithm generates each linear extension exactly twice but output exactly one
of them.

The paper [PR94] proposd the following question. Is there any algorithm to
generate each linear extension in O(1) time “in the worst case”? In this paper
we answer the question affirmatively.

In this paper we give an algorithm to generate all linear extensions of P .
Our algorithm is simple and generates each linear extension in constant time in
worst case (not on average). Our algorithm also outputs each linear extension as
the difference from the preceding one. Thus our algorithm also generates a Gray
code for linear extensions of a given poset.

The main idea of the algorithm is as follows. We first define a rooted tree (See
Fig. 3.) such that each vertex corresponds to a linear extension of P , and each
edge corresponds to a relation between two linear extensions. Then by traversing
the tree we generate all linear extensions of P . With a similar technique we
have already solved some generation problems for graphs[LN01,N02,NU03] and
combinatorics[KN05]. In this paper we apply the technique for linear extensions.

1 2 4

3 5 6

Fig. 1. An example of a poset P .

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 introduces the family tree. Section 4 presents our first algorithm. The
algorithm generates each linear extension of a given poset P in O(1) time on
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1 2 3 4 5 6

Fig. 2. A linear extension of a poset P .
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Fig. 3. The family tree of L(P).

average. In Section 5 we improve the algorithm so that it generates each linear
extension in O(1) time in worst case. Finally Section 6 is a conclusion.

2 Preliminaries

A poset P is a set S with a binary relation R which is reflexive, antisymmetric
and transitive. Note that R is a partial ordering on S. We denote n = |S|. We
say x precedes y if xRy. We regard a poset P as a directed graph D such that
(1) each vertex corresponds to an element in S, and (2) direct edge (x, y) exists
iff xRy. (See an example in Fig. 1.)

Given a poset P = (S, R), a linear extension of P is a permutaion (x1, x2,
· · · , xn) of S, such that if xiRxj then i ≤ j. Intuitively, if we draw the directed
graph corresponding to P so that x1, x2, · · · , xn appear along a horizontal line
from left to right in this order, then all directed edges go from left to right. (See
an example in Fig. 2.)

3 The Family Tree

In this section we define a tree structure among linear extensions LE(P) of a
given poset P .

Given a poset P = (S,R), choose a linear extension Lr ∈ LE(P). Without
loss of generality we can assume that S = {1, 2, . · · · , n} and L = (1, 2, . · · · , n).
(Otherwise, we rename the elements in S.) We call Lr = (1, 2, . · · · , n) the root
linear extension of P .

Then we define the parent P (L) for each linear extension L in LE(P) (except
for Lr) as follows. Let L = (x1, x2, · · · , xn) be a linear extension of P , and assume
that L 6= Lr. Let k be the minimum integer such that xk 6= k. Since L 6= Lr
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such k always exists. We define the level of L by k. For example the level of
(1, 2, 4, 3, 5, 6) is 3. For convenience we regard the level of Lr to be n + 1.

By removing k from L then inserting the k into the immediately before xk

of L, we have a different permutation L
′

. Note that k has moved to the left, and
so L

′

6= L. Now we have the following lemma.

Lemma 1. L
′

is also a linear extensions of P in LE(P).

Proof. Assume otherwise. Then there must exists xi such that (1) xiRk and
(2) i > k. However this contradicts the fact that Lr = (1, 2, . · · · , n) is a linear
extension of P .) Q.E .D.

We say that L
′

is the parent linear extension of L, and write P (L) = L
′

. If
P (L) is the parent linear extension of L then we say L is a child linear extension
of P (L

′

). Note that L has the unique parent linear extension P (L), while P (L)
may have many child linear extensions.

We also have the following lemma.

Lemma 2. Let ℓ and ℓp be the levels of a linear extension L and its parent
linear extension P (L). Then ℓ < ℓp.

Proof. Omitted.

The two lemmas above means the following. Given a linear extension L in
LE(P) where L 6= Lr, by repeatedly finding the parent linear extension of the
derived linear extension, we have the unique sequence L, P (L), P (P (L)), · · · of
linear extensions in LE(P), which eventually ends with the root linear extension
Lr. Since the level is always increased, L, P (L), P (P (L)), · · · never lead into a
cycle.

By merging these sequences we have the family tree of LE(P), denoted by TP ,
such that the vertices of TP correspond to the linear extensions in LE(P), and
each edge corresponds to each relation between some L and P (L). This proves
that every linear extension appears in the tree as a vertex. For instance, TP for
a poset in Fig. 1 is shown in Fig. 3. In Fig. 3, the k for each linear extension
is underlined. By removing the k, then inserting it into the k-th position the
parent linear extension is obtained.

4 Algorithm

In this section we give our generation algorithm. Given a poset P , our algorithm
traverses the family tree TP and generates all linear extensions of P .

If we can generate all child linear extensions of a given linear extension in
LE(P), then in a recursive manner we can construct TP , and generate all linear
extensions LE(P) of P . How can we generate all child linear extensions of a
given linear extension?
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Given a linear extension L = (p1, p2, p3, · · · , pn) in LE(P), let ℓp be the level
of L. Let C = (c1, c2, c3, · · · , cn) be a child linear extension of L, and let ℓc

be the level of C. By Lemma 2, the level of C is smaller than the level of L.
Thus ℓc < ℓp holds. Therefore, for each i = 1, 2, · · · , ℓp − 1, if we generate all
child linear extension of L “having level i”, then by merging those child linear
extensions we can generate all child linear extensions of L.

Now, given i, 1 ≤ i ≤ ℓp−1, we are going to generate all child linear extensions
of L = (p1, p2, · · · , pn) having level i. We can generate such child linear exten-
sions by deleting pi = i from L then insert it somewhere in (pi+1, pi+2, · · · , pn)
so that the resulting permutation is again a linear extension.

For example, see Fig. 3 for a poset P in Fig. 1. The last child L = (1, 2, 3, 5, 6, 4)
of the root linear extension has level 4. Thus each child linear extension has level
either 1, 2 or 3. For level 1, no child linear extensions of L having level 1 exists,
since 1R2 means we cannot move 1 to the right. For level 2, child linear ex-
tensions of L having level 2 are L = (1, 3, 2, 5, 6, 4), L = (1, 3, 5, 2, 6, 4) and
L = (1, 3, 5, 6, 2, 4). Note that L = (1, 3, 5, 6, 4, 2) is not a linear extension be-
cause of 2R4. For level 3, no child linear extensions of L having level 3 exists,
since 3R5 means we cannot move 3 to the right.

We have the following algorithm.

Procedure find-all-children(L = (p1p2 · · · pn),ℓp)
{ L is the current linear extension of P .}
begin

01 Output L { Output the difference from the preceding one.}
02 for i = 1 to ℓp - 1
03 begin { generate children with level i }
04 j = i
05 while (pj , pj+1) 6∈ R do

06 begin

07 swap pj and pj+1

08 find-all-children(L = (p1p2 · · · pn), i )
09 j = j + 1
10 end

11 insert pj into immediately after pi−1

12 { Now pi = i again holds, and L is restored as it was.}
13 end

end

Algorithm find-all-linear-extensions(P = (S, R))
begin

Find a linear extension Lr

find-all-children(Lr, n+1 )
end
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For example, see Fig. 3. The last child L = (1, 2, 3, 5, 6, 4) of the root linear
extension has level 4. Assume we are going to generate child linear extensions
having level 2. Since p2 = 2, p3 = 3 and (2, 3) 6∈ R, so we generate L =
(1, 3, 2, 5, 6, 4) by swapping p2 and p3. Then, since p3 = 2, p4 = 5 and (2, 5) 6∈ R,
so we generate L = (1, 3, 5, 2, 6, 4). Then, since p4 = 2, p5 = 6 and (2, 6) 6∈ R, so
we generate L = (1, 3, 5, 6, 2, 4). Then, since p5 = 2, p6 = 4 and (2, 4) ∈ R, so
we do not generate L = (1, 3, 5, 6, 4, 2).

Note that if (pi, pi+1) ∈ R, then L has no child linear extensions having level
i. Therefore if (1) (pa, pa+1), (pa+1, pa+2), · · · , (pb, pb+1) ∈ R, and (2) the level of
L is ℓp > b, then L has no child linear extension with level a, a + 1, · · · , b. Then
even if we execute Line 02 of the algorithm find-all-children several times, no
linear extension is generated. Thus we cannot generate k child linear extensions
in O(k) time.

However, we can preprocess the root linear extension and provide a simple
list to solve this problem, as follows. First let LIST = Lr = (1, 2, · · · , n). For
each i = 1, 2, · · · , n − 1, if (pi, pi+1) ∈ R, then we remove pi from LIST . Then
the resulting LIST tell us all levels at which at least one child linear extension
exists. Using LIST we can skip the levels at which no child linear extension
exists.

For instance, see TP in Fig. 3 for a poset in Fig. 1. For the root linear extension
Lr = (1, 2, 3, 4, 5, 6), LIST = (2, 3, 4, 6). The last child L = (1, 2, 3, 5, 6, 4) of Lr

has level 4.
Insted of generating all child linear extension at level i for i = 1, 2, · · · , ℓp−1

by the for loop in Line 02, we generate all child linear extensions at level i only
for each integer i in LIST up to ℓp − 1. Thus now we can generate k child linear
extensions in O(k) time.

Theorem 1. The algorithm uses O(n) space and runs in O(|LE(P)|) time.

Proof. Since we traverse the family tree TP and output each linear extension at
each corresponding vertex of TP , we can generate all linear extensions in LE(P)
without repetition.

Since we trace each edge of the family tree in constant time, the algorithm
runs in O(|LE(P)|) time.

The argument L of the recursive call in Line 08 is passed by reference. Note
that we restore L as it was when return occurs.

The algorithm outputs each linear extension as only the difference from the
preceding one. For each recursive call we need a constant amount of space, and
the depth of the recursive call is bounded by n. Thus the algorithm uses O(n)
space. Q.E .D.

5 Modification

The algorithm in Section 4 generates all linear extensions in LE(P) in O(|LE(P)|)
time. Thus the algorithm generates each linear extension in O(1) time “on av-
erage”. However, after generating a linear extension corresponding to the last
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vertex in a large subtree of TP , we have to merely return from the deep re-
cursive call without outputting any linear extension. This may take much time.
Therefore, we cannot generate each linear extension in O(1) time in worst case.

However, a simple modification [NU03] improves the algorithm to generate
each linear extension in O(1) time. The algorithm is as follows.

Procedure find-all-children2(L, depth)
{ L is the current sequence and depth is the depth of the recursive call.}
begin

01 if depth is even
02 then Output L { before outputting its child.}
03 Generate child linear extensions L1, L2, · · · , Lx by the method in Section

4, and
04 recursively call find-all-children2 for each child linear extension.
05 if depth is odd
06 then Output L { after outputting its child.}

end

One can observe that the algorithm generates all linear extensions so that
each sequence can be obtained from the preceding one by tracing at most three
edges of TP . Note that if L corresponds to a vertex v in TP with odd depth,
then we may need to trace three edges to generate the next linear extension.
Otherwise, we need to trace at most two edges to generate the next linear ex-
tension. Note that each linear extension is similar to the preceding one, since
it can be obtained with at most three (delete then insert) operations. Thus, we
can regard the derived sequence of the linear extensions as a combinatorial Gray
code [J80,S97,R93,W89] for linear extensions.

6 Conclusion

In this paper we gave a simple algorithm to generate all linear extensions of
a given poset. The algorithm is simple and generates each lenear extension in
constant time in worst case. This solve an open question in [PR94].

We have another choice for the definition of the family tree for LE(P) as
follows. Given a linear extension L = (c1, c2, · · · , cn) 6= Lr in P , let k be the
level of L. Then let i be the index such that ci = k. By definition i > k holds.
Now be swapping ci with its left neighbour we obtain another linear extension
P (L), and we say P (L) is the parent of L. Based on this parent-child relation
we can define another family tree for LE(P). For instance see Fig. 4. Based on
this family tree, in a similar manner, we can design another simple algorithm to
generate all linear extensions of a given poset. Note that each linear extension
is also similar to the preceding one. The next linear extension can be obtained
with at most three “adjacent transposition” operations.
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Fig. 4. Another family tree of L(P).
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