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Abstract. A plane graph is a planar graph with a fixed embedding. Let
G = (V, E) be an edge weighted connected plane graph, where V and E

are the set of vertices and edges, respectively. Let F be the set of faces of
G. For each edge e ∈ E, let w(e) ≥ 0 be the weight of the edge e of G. A
face-spanning subgraph of G is a connected subgraph H induced by a set
of edges S ⊆ E such that the vertex set of H contains at least one vertex
from the boundary of each face f ∈ F of G. A minimum face-spanning
subgraph H of G is a face-spanning subgraph of G, where

P

e∈S

w(e) is

minimum. In this paper we consider the problem of finding a minimum
face-spanning subgraph of a plane graph and deal with the following
problem which we call “the face-spanning subgraph problem”: “Is there
any face-spanning subgraph H of G such that

P

e∈S

w(e) ≤ b, for a positive

real number b?”. We prove that the face-spanning subgraph problem
of a plane graph is NP -complete, which implies that it is unlikely to
have a polynomial time algorithm for finding a minimum face-spanning
subgraph of a plane graph. In this paper, we prove a variation of the
face-spanning subgraph problem called “minimum-vertex face-spanning
subgraph problem” is also NP -complete. We also present approximation
algorithms for both the problems.

Key words: Graphs, NP -complete problems, Connected vertex cover, Face-
spanning subgraphs, Weighted tree cover.

1 Introduction

A gas company wants to supply gas to a locality from a single gas source. They
are allowed to pass the underground gas lines along the road network only,
because no one allows to pass gas lines through the bottom of his building. The
road network divides the locality into many regions as illustrated in Figure 1(a),
where each road is represented by a line segment and a point at which two or
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more roads meet is represented by a (black or white) small circle. A point at
which two or more roads meet is called an intersection point. Each region is
bounded by some line segments and intersection points. These regions need to
be supplied gas. If a gas line reaches an intersection point on the boundary of a
region, then the region may receive gas from the line at that intersection point.
Thus the gas lines should reach the boundaries of all the regions of the locality.
Gas will be supplied from a gasfield which is located outside of the locality and
a single pipe line will be used to supply gas from the gasfield to an intersection
point on the outer boundary of the locality. The gas company wants to minimize
the establishment cost of gas lines by selecting the roads for laying gas lines such
that the total length of the selected roads is minimum. Since gas will be supplied
from the gasfield using a single line to the locality, the selected road network
should be connected and contains an intersection point on the outer boundary
of the locality. Thus the gas company needs to find a set of roads that induces
a connected road network, supply gas in all the regions of the locality and the
length of the induced road network is minimum. Such a set of roads is illustrated
by thick lines in Figure 1(b).

(a)

Gasfield

(b)

Fig. 1. (a) A road-network of a locality and (b) a sample setup of gas pipelines drawn
by thick lines for supplying gas in all the regions from a gasfield.

The problem mentioned above can be modeled using a plane graph as follows.
Let G = (V, E) be an edge weighted connected plane graph, where V and E are
the set of vertices and edges, respectively. Let F be the set of faces of graph G.
For each edge e ∈ E, w(e) ≥ 0 is the weight of the edge e of G. A face-spanning
subgraph of G is a connected subgraph H induced by a set of edges S ⊆ E such
that the vertex set of H contains at least one vertex from the boundary of each
face f ∈ F of G. Figure 2 shows two face-spanning subgraphs drawn by thick
lines where the cost of the face-spanning subgraph in Figure 2(a) is 11 and the
cost of the face-spanning subgraph in Figure 2(b) is 13. Thus a plane graph may
have many face-spanning subgraphs whose cost are different. A minimum face-
spanning subgraph H of G is a face-spanning subgraph of G, where

∑

e∈S

w(e)

is minimum, and a minimum face-spanning subgraph problem asks to find a
minimum face-spanning subgraph of a plane graph. If we represent each road
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of the road network by an edge of G, each intersection point by a vertex of G,
each region by a face of G and assign the length of a road to the weight of
the corresponding edge, then the problem of finding a minimum face-spanning
subgraph of G is the same as the problem of the gas company mentioned above.
A minimum face-spanning subgraph problem often arises in applications like
establishing power transmission lines in a city, power wires layout in a complex
circuit, planning irrigation canal networks for irrigation systems etc.
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Fig. 2. A simple graph with (a) a face-spanning subgraph of cost 11 and (b) another
face-spanning subgraph of cost 13.

One may think of the “vertex cover problem”[FD04] or the “face cover prob-
lem” [AL04] while considering the minimum face-spanning subgraph problem.
Unfortunately, the minimum face-spanning subgraph problem is quite different
from those two problems. A vertex set C ⊆ V is called a vertex cover if every
edge of G is incident to some vertex in C and the vertex cover problem asks to
compute a minimum vertex cover in given G. The vertex cover problem asks to
find a vertex set which contains at least one vertex from the end vertices of each
edge of G whereas the minimum face-spanning subgraph problem asks to find an
edge set which contains at least one vertex from the boundaries of each face of
G. Hence, the vertex cover problem and the minimum face-spanning subgraph
problem are different. A set of faces whose boundaries contain all vertices in a
plane graph G is said to be a face cover for G and the face cover problem asks to
compute a minimum face cover in given G. The face cover problem asks to find a
face set which contains all the vertices of G whereas the minimum face-spanning
subgraph problem asks to find an edge set which contains at least one vertex
from the boundaries of each face of G. Hence, the face cover problem and the
minimum face-spanning subgraph problem are also different.

Efficient algorithms are necessary to solve these kinds of problems, which
arise from numerous practical applications. However developing efficient algo-
rithms is not always possible for many such problems [AHU74,K72,GJ79]. In
this paper, we show that it is unlikely to have a polynomial-time algorithm for
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finding a minimum face-spanning subgraph of a plane graph by proving that the
decisive version of the minimum face-spanning subgraph problem belongs to the
infamous class of NP -complete problems. In such a case, design of approximation
algorithms is needed for practical applications. We thus present approximation
algorithms for both the problems in this paper.

The rest of the paper is organized as follows. Section 2 describes some def-
initions. Section 3 proves the NP -completeness of the face-spanning subgraph
problem. A variation of this problem called the minimum-vertex face-spanning
subgraph problem is discussed in Section 4. We deal with approximation algo-
rithms in Section 5. Finally Section 6 gives the conclusion.

2 Preliminaries

In this section we give some definitions.

Let G = (V, E) be a simple graph with vertex set V and edge set E. The
number of vertices of G is denoted by n, that is, n = |V |, and the number of
edges of G is denoted by m, that is, m = |E|. We often denote the set of vertices
of G by V (G) and the set of edges of G by E(G). We denote an edge joining
vertices vi, vj of G by (vi, vj). If (vi, vj) ∈ E, then two vertices vi, vj are said to
be adjacent in G; edge (vi, vj) is then said to be incident to vertices vi and vj ; vi

is a neighbor of vj . The degree of a vertex v in G is the number of edges incident
to v in G. We denote the maximum degree of graph G by ∆(G) or simply by
∆. A path in G is an ordered list of distinct vertices (v1, v2, . . . , vq−1, vq) ∈ V
such that (vi−1, vi) ∈ E for all 2 ≤ i ≤ q. G is connected if for any two distinct
vertices vi, vj of G there is path between vi and vj in G. G is a tree if G is
connected and has no cycle. H = (V ′, E′) is called a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. A subgraph H = (V ′, E′) of G is called the edge induced subgraph

of G induced by the edge set E′ if V ′ contains only the vertices of G which are
end vertices of the edges in E′. For a set of edges S ⊆ E, we denote by V (S) the
set of vertices consisting of the end vertices of the edges in S, that means, V (S)
is the set of vertices of the edge induced subgraph of G induced by S.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph G is a planar graph with a fixed embedding. A plane graph divides
the plane into connected regions called faces. The unbounded region is called the
outer face of G. We call a vertex v of G an outer vertex if it is on the boundary
of the outer face of G. Let F be the set of faces of plane graph G. We say a
set of edges S ⊆ E covers a face f ∈ F if V (S) contains at least one vertex
from the vertices on the boundary of f . Edge weighted connected plane graph is
a connected plane graph where each edge e has a weight w(e) ≥ 0. Let G be an
edge weighted connected plane graph. Then for a subgraph H of G, the cost of

H is computed as
∑

e∈E(H)

w(e). We say a vertex set V ′ ⊆ V covers all the edges

of G if V ′ contains at least one vertex from the end vertices of each edge of G. H
is a tree cover of G if H is a tree in G and the vertices in H cover all the edges
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of G. A face-spanning subgraph of edge weighted connected plane graph G is a
connected subgraph H induced by a set of edges S ⊆ E such that the vertex set
of H contains at least one vertex from the boundary of each face f ∈ F of G.
A minimum face-spanning subgraph H of G is a face-spanning subgraph of G,
where

∑

e∈S

w(e) is minimum.

To prove that the face-spanning subgraph problem is NP -complete we re-
duce the weighted tree cover problem to the face-spanning subgraph problem
in Section 3. The formal definition of weighted tree cover problem is as follows
[AHH93]:

Definition 1. (Weighted Tree Cover Problem) Given a plane graph G = (V, E)
and weight on the edges w(e) ≥ 0 for all e ∈ E and a positive real number b, does

there exist any weighted tree T = (V ′, E′) induced by E′ ⊆ E, whose vertices

V ′ ⊆ V cover all the edges in E and
∑

e∈E′

w(e) ≤ b?

3 Face-Spanning Subgraph Problem

In this section we show that the face-spanning subgraph problem is NP -complete.
To prove that the face-spanning subgraph problem is NP -complete, we have to
show that (i) the face-spanning subgraph problem is in NP and (ii) the face-
spanning subgraph problem is NP -hard. We begin with a formal definition of
the face-spanning subgraph problem:

Definition 2. (Face-Spanning Subgraph Problem) Let G = (V, E) be a con-

nected plane graph, where V and E are the set of vertices and edges, respectively,

and let F be the set of faces of graph G. Let w(e) ≥ 0 be a positive real number

assigned to edge e as weight for every edge e ∈ E. Then is there any set S ⊆ E
such that the subgraph H induced by S is connected, cover all faces of G and the

cost of H is ≤ b, for a given positive real number b?

In the rest of this section we prove that the face-spanning subgraph prob-
lem defined above is NP -complete. As the first step of the proof, we prove the
following lemma.

Lemma 1. The face-spanning subgraph problem is in NP.

Proof. To prove that the face-spanning subgraph problem is in NP, it is sufficient
to prove that for a given set S ⊆ E, we can verify in polynomial-time that the
subgraph H induced by S (i) is connected, (ii) cover all faces of G and (iii) the
cost of H is ≤ b.

(i) Connectivity of the subgraph H induced by S can be checked using DFS
in linear time.

(ii) We can verify whether S covers all faces of G or not in linear time by
the following method.

Let F (v) be the set of faces of G such that each face in F (v) contains the
vertex v. We maintain a face-list for each vertex v, where the face-list for v
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contains the faces in F (v). We also maintain a boolean array AF of length |F |
to indicate whether the faces of G are covered by the vertices in V (S) or not.
For all j ∈ {1, 2, . . . , |F |}, AF [j] corresponds to the face fj of graph G. Initially
all elements of AF are set to 0 to indicate that no face is covered by the vertices
in V (S) initially. We traverse the face-list for each vertex v in V (S) and for each
face fj in the face-list, we change the value of AF [j] to 1 to indicate that the
face fj is covered by the vertices in V (S). After traversing the face-lists for all
vertex in V (S), we check the array AF to know that whether all faces of G are
covered or not.

We now calculate the complexity of the method described above. Since |F (v)|
is equal to the degree of v and |V (S)| is at most |V |, then, to check all the vertices
of V (S), we have to consider at most

∑

v∈V (S)

d(v) = 2m = O(m) = O(n) entries

in total. Since the length of array AF is equal to |F |, the traversing time of AF
is O(|F |) = O(n). Thus, the overall time complexity to verify that whether the
vertices in V (S) cover all faces of G or not is O(n).

(iii) It can be verified easily in O(n) time that the cost of H is ≤ b.
Since it is possible to verify (i), (ii) and (iii) in polynomial time, the face-

spanning subgraph problem is in NP. Q.E .D.

We now prove the following lemma as the second part of the proof.

Lemma 2. The face-spanning subgraph problem is NP-hard.

To prove lemma 2 we will prove that, the NP -complete problem weighted
tree cover problem can be polynomially transformed into the face-spanning sub-
graph problem in such a way that any polynomial-time algorithm for solving the
face-spanning subgraph problem could be used to solve the weighted tree cover
problem in polynomial time.

Let G = (V, E) be a connected plane graph, where V and E are the set of
vertices and edges, respectively. Let F be the set of faces of graph G. We obtain
a graph G′ from G as follows. For each edge e = (vk, vl) ∈ E we add a vertex
ve and two edges (vk, ve) and (vl, ve) to G. More formally, G′ = (V ′, E′) where
V ′ = V ∪Ve, Ve = {ve|e ∈ E} and E′ = E∪Ee where Ee = {(ve, vk), (ve, vl)|{e =
(vk, vl)} ∈ E}. In G′ we call a vertex in Ve a new vertex, a vertex in V an
original vertex, an edge in Ee a new edge and an edge in E an original edge.
Note that original vertices and original edges of G′ are also the vertices and edges
of G. We assign the cost w(e)/2 to each of the edges (ve, vk) and (ve, vl) for all
e = (vk, vl) ∈ E. Figure 3 illustrates the construction of G′ where the vertices
drawn by white small circles are new vertices, the edges drawn by dashed lines
are new edges, the vertices drawn by black circles are original vertices and the
edges drawn by solid lines are the original edges of G′. If G has n vertices and m
edges, then G′ has n + m vertices and 3m edges. Clearly G′ can be constructed
from G in O(n) time. One can easily observe that the graph G′ is planar as
illustrated in Figure 3, where a plane embedding of G′ is shown. Throughout
the paper we consider G′ as a plane embedding of the graph G′. For each edge
e = (vk, vl) ∈ E, we call the face (vk, vl, ve) of G′ a α-face. We call each of the
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remaining faces of G′ a β-face. Figure 3 illustrates α-faces and β-faces. We now
have the following lemma.

α

α
α

α

α

α

α

α

α

G G

β

β

β

Fig. 3. Illustration for the construction of G′ from G.

Lemma 3. G′ has a face-spanning subgraph H of cost ≤ b′ if and only if G has

a weighted tree cover T of cost ≤ b, where b and b′ are two positive real numbers.

Proof. Necessity. Assume that G′ has a face-spanning subgraph of cost ≤ b′,
that is, there is an edge set S′ ⊆ E′ of graph G′ such that the subgraph H
induced by S′ is connected, cover all faces of G′ and the cost of H is ≤ b′. We
now prove that G has a weighted tree cover T of cost ≤ b, for a positive real
number b.

From the construction of G′ it is obvious that the degree of each new vertex
v is two in G′. Each new vertex has exactly two neighbors vi, vj among the
original vertices and there is an original edge (vi, vj) between the two original
vertices as illustrated in Figure 4(a). Modifying the subgraph H we construct
a subgraph T of G′ such that T contains only the original vertices and original
edges as follows. Since H is a subgraph of G′, degree of each new vertex v in
H is either one or two. For each new vertex v of H we perform one of the two
operations described in Case 1 and Case 2 below to obtain T from H .

Case 1: v has degree two in H
In this case v has two neighbors vi, vj among the original vertices such that
(vi, vj) is a solid edge. If (vi, vj) ∈ E(H) then we delete v from H to obtain T
as illustrated in Figure 4(b) and 4(e). Otherwise we replace the path (vi, v, vj)
of H by the edge (vi, vj) to construct T as illustrated in Figure 4(c) and 4(e).

Case 2: v has degree one in H
In this case v has exactly one neighbor vi among the original vertices. We simply
remove the new vertex v of H to construct T . Figure 4(d) and 4(f) illustrates
this case.

If T contains cycles, we delete an edge from each cycle until the resulting
subgraph has no cycle and we regard the resulting subgraph as T , and take the
set of all edges in T as S.
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We now prove that T is a tree in G of cost ≤ b. Since H is connected, if we
delete the new vertex v or we replace the path (vi, v, vj) by edge (vi, vj) in Case 1,
T remains connected. Again, the cost of the path (vi, v, vj) is w(e)/2+w(e)/2 =
w(e) in total, which is equal to the cost of the edge (vi, vj). Hence in Case 1,
the cost of the modified subgraph is decreased (if we delete the new vertex v) or
unchanged (if the path (vi, v, vj) is replaced by edge (vi, vj)). In Case 2, the new
vertex has degree one and it is omitted, hence T remains connected after consid-
ering Case 2 for all such new vertices. In this case, edge (v, vi) is removed, hence
the cost of the modified subgraph decreases. Thus T is a connected subgraph of
cost ≤ b′ in G′. Note that we have destroyed cycles to construct T and T is a
tree of cost ≤ b′ in G′. If we take b = b′, then the cost of tree T is ≤ b. Since
the edges of T in G′ are original edges and the vertices of T in G′ are original
vertices, G contains T . Hence T is a tree of cost ≤ b in G.
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Fig. 4. Illustration for the construction of T from H .

Note that T and H are induced by S and S′ respectively. To prove that T is
a weighted tree cover in G of cost ≤ b, it is now remained to show that the set
of vertices V (S) of subgraph T is a vertex cover in G. Since H is face-spanning
subgraph of G′, the set of vertices V (S′) of H covers all faces of G′. Hence V (S′)
contains at least one vertex (either black or white) from the boundary of each
face of G′. Since H is connected, V (S′) can contain a new vertex v only if V (S′)
contains at least one neighbor vi of v among the original vertices in G′. Since
a new vertex v has degree 2, the two faces covered by a new vertex v are also
be covered by an original vertex vi which is neighbor to the new vertex v. Thus
V (S′) contains at least one original vertex from the boundary of each face of
G′. Since V (S) contains all the original vertices of V (S′), V (S) also contains at
least one original vertex from the boundary of each face of G′. Since we create
an α-face in G′ for each edge of G while constructing G′, there is a face of G′
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for each edge in G. Since each face of G′ is covered by V (S), each edge of G is
covered by V (S). Hence V (S) contains at least one vertex from each edge of G.
Thus V (S) is a vertex cover of G.

Since, T is a tree in G of cost ≤ b and V (S) is a vertex cover of graph G, T
is a weighted tree cover of cost ≤ b of G.

Sufficiency. Assume that G has a weighted tree cover of cost≤ b, that is,
there is tree T in G of cost ≤ b and the vertex set V (S) that T contains is a
vertex cover of graph G. We now prove that G′ has a face-spanning subgraph H
of cost ≤ b′, for a positive real number b′. We take b = b′.

From the construction of G′ it is clear that all the vertices in V (S) and the
edges of T in G are also in G′. We take S′ as the set of edges of G′ which are in
S and let H be the subgraph induced by S. Then H contains all the edges of T
and V (S′) contains all the vertices in V (S). We now show that the subgraph H
of G′ is (i) connected, (ii) cover all faces of G′ and (iii) the cost of H is ≤ b′.

(i) From the construction it is obvious that all the vertices and edges of G
are also in G′. Since T is a tree in G and T = H , H is a tree in G′. Hence the
subgraph H induced by S′ in G′ is connected.

(ii) Since the subgraph T induced by S is a weighted tree cover of G, then
for each edge e = (vk, vl) ∈ E of G, V (S) contains either vk or vl or both. By
the construction of G′ from G, G′ has an α-face for each edge e ∈ E of G. Thus
V (S′) contains vk or vl or both for each α-face of graph G′. Since each edge of G
is covered by V (S), each α-face of graph G′ is covered by V (S′). We now need
to show that the β-faces of G′ are also covered by V (S′). Since each β-face of
G′ contains the original vertices of at least three α-faces and V (S′) contains at
least one original vertex from each α-face, V (S′) contains at least two original
vertices. Hence each β-face of G′ is covered by V (S′). Thus V (S′) covers all the
faces of G′, that means, the subgraph H induced by S′ in G′ cover all faces of
G′.

(iii) The cost of T is ≤ b. Since T = H and b = b′, the cost of H is ≤ b′ in
G′. Q.E .D.

Proof of Lemma 2: Since the construction of G′ from G takes polynomial
time, Lemma 3 implies that the face-spanning subgraph problem is NP -hard.

Q.E .D.

By Lemma 1 and 2, the following theorem holds.

Theorem 1. The face-spanning subgraph problem is NP-complete.

4 Minimum-Vertex Face-Spanning Subgraph Problem

In this section we consider a variation of the face-spanning subgraph problem,
which we call minimum-vertex face-spanning subgraph problem. The formal def-
inition of the problem is as follows:



Minimum Face-Spanning Subgraphs 71

Definition 3. (Minimum-Vertex Face-Spanning Subgraph Problem) Let G =
(V, E) be a connected plane graph , where V and E are the set of vertices and

edges, respectively, and let F be the set of faces of graph G. Then is there any

set S ⊆ E such that the subgraph H induced by S is connected, cover all faces

of G and |V (H)| ≤ k, for a given positive integer k ≤ |V |?

The minimum-vertex face-spanning subgraph problem often arises in applica-
tions like establishing base transceiver station in wireless networks, establishing
power distribution centers in a city etc where the setup cost for each establish-
ment is huge. In these cases the objective is to minimize the number of vertices
instead of edge cost. To prove that the minimum-vertex face-spanning subgraph
problem is NP -complete, we use the well known NP -complete problem “con-
nected vertex cover” problem. The subgraph H be a connected vertex cover of
G if V (H) is a vertex cover of G and the subgraph H induced by V (H) is con-
nected. The formal definition of connected vertex cover problem is as follows
[GJ77].

Definition 4. (Connected Vertex Cover Problem) Given a plane graph G =
(V, E) and an integer k, does there exist a vertex cover V ′ ⊆ V satisfying |V ′| ≤ k
and the subgraph induced by V ′ is connected?

In the rest of this section we prove that the minimum-vertex face-spanning
subgraph problem is NP -complete. To prove that the minimum-vertex face-
spanning subgraph problem is NP -complete, we show that (i) the minimum-
vertex face-spanning subgraph problem is in NP and (ii) the minimum-vertex
face-spanning subgraph problem is NP -hard.

As the first step of the proof, we have the following lemma.

Lemma 4. The minimum-vertex face-spanning subgraph problem is in NP.

Proof. The proof is similar to the proof of Lemma 1. Q.E .D.

We now prove the following lemma as the second part of the proof.

Lemma 5. The minimum-vertex face-spanning subgraph problem is NP-hard.

Let G = (V, E) be a connected plane graph, where V and E are the set
of vertices and edges, respectively. Let F be the set of faces of graph G. We
obtain a plane graph G′ from G using the construction described in Section 3 as
illustrated in Figure 3. Note that we do not consider weight of the edges, since
the graph is not weighted in the current problem.

We now have the following lemma.

Lemma 6. G′ has a minimum-vertex face-spanning subgraph H ′ with |V (H ′)| ≤
k′ if and only if G has a connected vertex cover H with |V (H)| ≤ k, where k
and k′ are two positive integers.

Proof. The proof is similar to the proof of Lemma 3. The detail of the proof is
omitted in this extended abstract. Q.E .D.
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Proof of Lemma 5: Since the construction of G′ from G takes polynomial
time, Lemma 6 implies that the minimum-vertex face-spanning subgraph prob-
lem is NP -hard. Q.E .D.

By Lemma 4 and 5, the following theorem holds.

Theorem 2. The minimum-vertex face-spanning subgraph problem is

NP-complete.

5 Approximation Algorithms

In this section we discuss some issues related to the approximation algorithms
for finding the minimum face-spanning subgraph and the minimum-vertex face-
spanning subgraph.

In practical applications of the face-spanning subgraph problem like the gas
pipelines planning problem in Section 1, an input is often a plane graph G such
that each vertex of G has degree three or more. We thus consider graphs of the
minimum degree three in this section for designing approximation algorithms.

We first establish a lower bound on the number of vertices of a face-spanning
subgraph of a plane graph. Let H be a face-spanning subgraph of G induced
by edge set S ⊆ E. We call H a minimal face-spanning subgraph of G if there
is no edge set S′ ⊆ S such that the subgraph induced by S′ is a face-spanning
subgraph of G. Clearly a minimal face-spanning subgraph is a tree. Figure 5
illustrates an example of minimal face-spanning subgraph. The thick lines in
Figure 5(a) is a minimal face-spanning subgraph. The thick lines in Figure 5(b)
is not a minimal face-spanning subgraph since the subset of this thick lines can
induce a face-spanning subgraph.

(b)(a)

Fig. 5. Illustration of (a) a minimal face-spanning subgraph, and (b) a non-minimal
face-spanning subgraph.

A plane graph may have many minimal face-spanning subgraphs. Note that a
minimum face-spanning subgraph of G defined in Section 2 is one of the minimal
face-spanning subgraphs of G whose total edge weight is minimum among all the
minimal face-spanning subgraphs. Thus we can find a minimum face-spanning
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subgraph of a plane graph G by finding all minimal face-spanning subgraphs
and choosing one whose total edge weight is minimum among all the minimal
face-spanning subgraphs of G.

A minimum-vertex face-spanning subgraph H of G defined in Section 4 may
not be a minimal face-spanning subgraph of G, since the definition of a minimum-
vertex face-spanning subgraph allows cycles in H . However, there exists a mini-
mal face-spanning subgraph H ′ of G with the vertex set V (H), and H ′ can be
obtained by removing an edge from each cycle in H if H has any cycle.

We now have the following lemma regarding the lower bound on the number
of vertices of a minimal face-spanning subgraph whose proof is omitted in this
extended abstract.

Lemma 7. Let G = (V, E) be a connected plane graph. Assume that each ver-

tex of G has degree three or more. Let H be a minimal face-spanning subgraph

induced by S ⊆ E of G. Then |V (S)| ≥ (f − 2)/(∆ − 2), where f is the number

of faces of G.

We have a graph of 9 faces with ∆ = 3 as illustrated in Figure 6, for which the
minimum number of vertices required for a face-spanning subgraph is 7. Thus
the example in Figure 6 attains the lower bound, and hence the bound is tight.

Fig. 6. A graph of 9 faces with ∆ = 3 for which the minimum number of vertices
required for a face-spanning subgraph is 7.

We now give an algorithm for finding a minimal face-spanning subgraph
based on spanning tree. Let G = (V, E) be a connected plane graph, where V
and E are the set of vertices and edges, respectively, and let F be the set of
faces of G. Let v0 be an outer vertex of G. Let G′ be the graph obtained from
G by deleting all outer vertices of G except v0. Let T be a spanning tree of G′.
One can observe that T is a face-spanning subgraph of G. We traverse the tree
T and delete each leaf vertex v of T if each of the faces of G which contains v is
covered by any other vertex in T . Deletion of v from T may generate a new leaf
vertex of T . We repeat the operation above for all the leaf vertices of T including
the newly generated leaf vertices. The resulting tree T is our desired minimal
face-spanning subgraph H . Using a data structure similar to that described in
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Lemma 1 we can obtain a minimal face-spanning subgraph mentioned above in
linear time. We call the algorithm described above Find-Minimal-Subgraph.

Clearly the following lemma holds on the upper bound of the number of ver-
tices of a minimal face-spanning subgraph produced by Algorithm Find-Minimal-

Subgraph.

Lemma 8. Let G be a plane graph of n vertices, and let n0 be the number of

outer vertices of G. Assume that each vertex of G has degree three or more.

Then Algorithm Find-Minimal-Subgraph produce a minimal face-spanning sub-

graph with at most n − n0 + 1 vertices in linear time.

The upper bound in Lemma 8 is also tight, since we have an infinite number
of examples attaining the bound; one example is shown in Figure 7.

Fig. 7. A graph of 7 faces with n = 10 and n0 = 6 for which the minimum number of
vertices required for a face-spanning subgraph is 5.

We can take a minimal face-spanning subgraph of a connected plane graph G
produced by Algorithm Find-Minimal-Subgraph as an approximate solution of
the minimum-vertex face-spanning subgraph problem, then we have the following
theorem.

Theorem 3. Let G = (V, E) be a connected plane graph. Then the approxima-

tion ratio of Algorithm Find-Minimal-Subgraph for finding a minimum-vertex

face-spanning subgraph is 2(∆ − 2).

Proof. Algorithm Find-Minimal-Subgraph constructs a minimum-vertex face-
spanning subgraph of G with at most n − n0 + 1 vertices. By Lemma 7 a
face-spanning subgraph of G has at least (f −2)/(∆−2) vertices. Hence approx-
imation ratio is (n−n0 +1)/{(f −2)/(∆−2)}. From Euler’s Formula for planar
graphs, we have f −2 = m−n. Since degree of any vertex in G is ≥ 3, 2m ≥ 3n.
This implies (m− n) ≥ n/2 and hence (f − 2) ≥ n/2. Therefore the approxima-
tion ratio is (n − n0 + 1)/{(f − 2)/(∆ − 2)} ≤ (n − n0 + 1)/{(n/2)/(∆− 2)} =
2(n − n0 + 1)(∆ − 2)/n ≤ 2(∆ − 2). Q.E .D.

A minimal face-spanning subgraph produced by Algorithm Find-Minimal-

Subgraph can also be taken as an approximate solution of the minimum face-
spanning subgraph problem. One can easily observe that approximation ratio of
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Algorithm Find-Minimal-Subgraph for finding minimum face-spanning subgraph
is {(n−n0)emax}/{{(f − 2)/(∆− 2)− 1}emin} = {(n− n0)(∆− 2)emax}/{(f −
∆)emin}, where emax and emin denote the maximum and minimum weight of
the edges of G.

6 Conclusion

In this paper we showed that the face-spanning subgraph problem and the
minimum-vertex face-spanning subgraph problem are NP -complete. Thus it is
unlikely to develop efficient algorithms for these problems. Since the problems
arise from many practical applications, developing efficient approximation al-
gorithms are essential. We have designed approximation algorithms for both
the minimum face-spanning subgraph problem and the minimum-vertex face-
spanning subgraph problem. We also analyzed the complexities and approxima-
tion ratios of the designed approximation algorithms. We have shown a lower
bound for both the problems based on the number of vertices which is tight. We
have also shown a tight upper bound of the number of vertices of a minimal face-
spanning subgraph. However, to design approximation algorithms with better
approximation ratio for the face-spanning subgraph problem and the minimum-
vertex face-spanning subgraph problem is left as open problems.
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