
Upward Planar Drawings of

Series-Parallel Digraphs with
Maximum Degree Three

(Extended Abstract)

Md. Abul Hassan Samee and Md. Saidur Rahman

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology (BUET).

{samee,saidurrahman}@cse.buet.ac.bd

Abstract. An upward planar drawing of a digraph G is a planar drawing
of G where every edge is drawn as a simple curve monotone in the vertical
direction. A digraph is upward planar if it has an embedding that admits
an upward planar drawing. The problem of testing whether a digraph
is upward planar is NP-complete. In this paper we give a linear-time
algorithm to test the upward planarity of a series-parallel digraph G

with maximum degree three and obtain an upward planar drawing of G

if G admits one.
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1 Introduction

In an upward planar drawing of a digraph, every vertex is mapped to a point in
the Euclidean plane and every edge is drawn as a simple curve monotone in the
vertical direction without producing any crossing with other edges, as illustrated
in Fig. 1(a). Upward planar drawings of digraphs find important applications
in visualization of the hierarchical network structures which frequently arise
in software engineering, project management and visual languages [BDMT98].
Unfortunately, not all digraphs have upward planar drawing. One can easily
understand that if a digraph contains a cycle, then one of the edges on the cycle
cannot be drawn monotonically in the upward direction (see the cycle induced
by vertices b, c, h and g of digraph G′ in Fig. 1(b)). A digraph is upward planar
if it has an embedding which admits an upward planar drawing. Acyclicity is a
necessary condition for a digraph to be upward planar. Throughout this paper,
wherever we refer to a digraph, we mean an acyclic digraph. However, acyclicity is
not a sufficient condition for upward planarity. For example, the acyclic digraph
G′′ in Fig. 1(c) is not upward planar; there are four possible upward planar
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Fig. 1. (a) An upward planar digraph G, (b) a digraph G′ which contains a cycle and
therefore is not upward planar and (c) an acyclic digraph G′′ which is not upward
planar.
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Fig. 2. The four possible embeddings of face F1 of digraph G′′.

embeddings of the undirected cycle induced by the vertices a, b, c and d (see
Fig. 2), and starting with any of these four embeddings, the remaining edges
cannot be added in any way to obtain an upward planar drawing of G′′.

The problem of testing upward planarity of a digraph is one of the most
challenging problems in the area of graph drawing and has been studied with
extensive effort. Linear-time algorithms are known for testing whether a digraph
admits a planar drawing [HT74,BL76]. Testing whether a digraph admits an up-
ward drawing can also be solved in linear-time using the well-known topological
sorting technique [CLRS01]. Nevertheless, combining these two properties makes
the problem NP-hard [GT94]. The problem can be studied both in the fixed em-
bedding setting and in the variable embedding setting. In the fixed embedding
setting, the algorithm cannot alter the given embedding, and if that particular
embedding is not upward planar, the output must be negative although some
other embedding of the same graph could be upward planar. Fig. 3(a) shows an
upward planar embedding of a digraph G whose embedding in Fig. 3(b) is not
upward planar. Fig. 3(c) is another upward planar embedding of G. Bertolazzi
et al. [BDLM94] have given an algorithm to test upward planarity in time O(n2)
in the fixed embedding setting.

In the variable embedding setting, the algorithm can give a negative output
only if there is no upward planar embedding of the input graph. Garg and
Tamassia [GT01] proved that it is an NP-complete problem to determine whether
a digraph has an upward planar drawing in the variable embedding setting.
Nevertheless, the problem has been studied in the variable embedding setting for
some restricted classes of digraphs [Pap95,HL96,BDMT98]. Garg and Tamassia
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Fig. 3. (a) An upward planar digraph G and an upward planar embedding of G, (b) a
non-upward planar embedding of G, and (c) another upward planar embedding of G.

[GT95] proved that a series-parallel digraph with single source and single sink is
always upward planar. Unfortunately, a series-parallel digraph G with multiple
sources and sinks may not be upward planar, and testing upward planarity for
digraphs with multiple sources and sinks is more difficult. Recently, Didimo et
al. [DGL06] provided an algorithm that tests upward planarity of series-parallel
digraphs in time O(n4) in the variable embedding setting.

In this paper, we study upward planar drawings of series-parallel digraphs
of ∆ ≤ 3 with multiple sources and sinks in the variable embedding setting. For
such a digraph G, we give a linear-time algorithm to construct an upward planar
drawing of G if G admits one. The approach of our algorithm is different from
the one presented in [DGL06] and the algorithm in [DGL06] requires time O(n4)
even for a series-parallel digraph with the maximum degree three. The main
idea of our algorithm is as follows. Our algorithm works in two phases, namely
a testing phase and a construction phase. We begin with a decomposition tree
called SPQ-tree T of G. In the testing phase, we traverse T bottom-up and test
the feasibility of obtaining an upward planar drawing of G. If this phase fails, we
declare that G is not an upward planar digraph. If the testing phase succeeds, we
start the construction phase and using the information obtained in the testing
phase, we obtain an upward planar embedding of G in a top-down traversal of
T .

The rest of the paper is organized as follows. Section 2 describes some def-
initions and presents preliminary results. In Section 3 we describe our primary
findings on upward planarity of series-parallel digraphs with ∆ ≤ 3. Section 4
presents our algorithm to test upward planarity and find an upward planar draw-
ing of a biconnected series-parallel digraph with ∆ ≤ 3. Finally, Section 5 is a
conclusion.

2 Preliminaries

In this section we give some definitions and present preliminary results.
Let G = (V, E) be a connected graph with vertex set V and edge set E. The

degree of a vertex v, deg(v) is the number of edges incident to v in G. We denote
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the maximum of the degree of the vertices of G by ∆(G). The connectivity κ(G)
of a graph G is the minimum number of vertices whose removal results in a
disconnected graph or a single-vertex graph K1. We say that G is k-connected
if κ(G) ≥ k. A planar drawing of G partitions the plane into topologically
connected regions called faces. The unbounded face is called the outer face, the
remaining faces are called inner faces. A path in G is an ordered list of distinct
vertices v1, v2, . . . , vq ∈ V such that (vi−1, vi) ∈ E for all i, 2 ≤ i ≤ q. A path P

is called a u, v-path if u and v are the first and last vertices in P respectively.
A graph G = (V, E) is called a series-parallel graph (with source s and

sink t) if either G consists of a pair of vertices connected by a single edge or
there exist two series-parallel graphs Gi = (Vi, Ei), i = 1, 2, with source si and
sink ti such that V = V1 ∪ V2, E = E1 ∪ E2, and either s = s1, t1 = s2 and
t = t2 or s = s1 = s2 and t = t1 = t2 [REN05]. A pair {u, v} of vertices of a
connected graph G is a split pair if there exist two subgraphs G1 = (V1, E1) and
G2 = (V2, E2) satisfying the following two conditions:

1. V = V1 ∪ V2, V1 ∩ V2 = {u, v}; and
2. E = E1 ∪ E2, E1 ∩ E2 = ∅, |E1| ≥ 1, |E2| ≥ 1.

Thus every pair of adjacent vertices is a split pair. A split component of a split
pair {u, v} is either an edge (u, v) or a maximal connected subgraph H of G

such that {u, v} is not a split pair of H .
Let G be a biconnected series-parallel graph. Let (s, t) be an edge of G. The

SPQ-tree T of G with respect to a reference edge e = (s, t) describes a recursive
decomposition of G induced by its split pairs [GL99]. Tree T is a rooted ordered
tree whose nodes are of three types: S, P and Q. Each node x of T corresponds
to a subgraph of G, called its pertinent graph G(x). Each node x of T has
an associated biconnected multigraph, called the skeleton of x and denoted by
skeleton(x). Tree T is recursively defined as follows.

• Trivial Case: In this case, G consists of exactly two parallel edges e and e′

joining s and t. T consists of a single Q-node x, and the skeleton of x is G itself.
The pertinent graph G(x) consists of only the edge e′.

• Parallel Case: In this case, the split pair {s, t} has three or more split
components G0, G1, · · · , Gk, k ≥ 2, and G0 consists of only a reference edge
e = (s, t). The root of T is a P-node x. The skeleton(x) consists of k + 1 parallel
edges e0, e1, · · ·, ek joining s and t, where e0 = e = (s, t) and ei, 1 ≤ i ≤ k,
corresponds to Gi. The pertinent graph G(x) = G1 ∪G2 ∪ · · · ∪Gk is a union of
G1, G2, · · · , Gk. As an example, the skeleton of P-node P2 in Fig. 4 consists of
three parallel edges joining vertices a and c and Figure 4(d) depicts the pertinent
graph of P2.

• Series Case: In this case the split pair {s, t} has exactly two split compo-
nents, and one of them consists of the reference edge e. One may assume that
the other split component has cut-vertices c1, c2, · · ·, ck−1, k ≥ 2, that partition
the component into its blocks G1, G2, · · · , Gk in this order from s to t. Then the
root of T is an S-node x. The skeleton of x is a cycle e0, e1, · · ·, ek where e0 = e,
c0 = s, ck = t, and ei joins ci−1 and ci, 1 ≤ i ≤ k. The pertinent graph G(x) of
node x is a union of G1, G2, · · · , Gk. For example, the skeleton of S-node S3 in
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Fig. 4. (a)A biconnected series-parallel graph G with ∆ = 3, (b) SPQ-tree T of G

with respect to reference edge (i, n), and skeletons of P- and S-nodes, (c) the pertinent
graph G(S3) of S-node S3, (d) the pertinent graph G(P2) of P-node P2, (e) the pertinent
graph G(S5) of S-node S5, (f) the pertinent graph G(P3) of P-node P3, (g) SPQ-tree
T of G with P-node P1 as the root

Fig. 4 is the cycle a, i, l, c, a and Figure 4(c) depicts the pertinent graph G(S3)
of S3.

In each of the cases mentioned above, we call the edge e the reference edge
of node x. Except for the trivial case, node x of T has children x1, x2, · · ·, xk

in this order; xi is the root of the SPQ-tree of graph G(xi) ∪ ei with respect to
the reference edge ei, 1 ≤ i ≤ k. We call edge ei the reference edge of node xi,
and call the endpoints of edge ei the poles of node xi. The tree obtained so far
has a Q-node associated with each edge of G, except the reference edge e. We
complete the SPQ-tree T by adding a Q-node, representing the reference edge e,
and making it the parent of x so that it becomes the root of T . An example of
the SPQ-tree of a biconnected series-parallel graph in Fig. 4(a) is illustrated in
Fig. 4(b), where the edge drawn by a thick line in each skeleton is the reference
edge of the skeleton.

The SPQ-tree T defined above is the one used in [REN05] and is a special
case of an “SPQR-tree”[DT96,GL99] where there is no R-node and the root
of the tree is a Q-node corresponding to the reference edge e. One can easily
modify T to an SPQ-tree T ′ with an arbitrary P-node as the root as illustrated
in Fig. 4(g).

Let G be a planar digraph. G is a series-parallel digraph if the underlying
undirected graph of G is a series-parallel graph. The SPQ-tree of a series-parallel
digraph G is exactly the same as the one of the underlying undirected series-
parallel graph of G. In the remainder of this paper, we consider an SPQ-tree
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T of a series-parallel digraph G with a P-node as the root. If ∆(G) = 2, then
the underlying undirected graph of G is a cycle and |E| − |V | = 0. It has been
shown in [HL05] that all acyclic digraphs with |E| − |V | < 2 are upward planar.
Hence, for ∆(G) = 2, G is always upward planar. One may thus assume that
∆(G) ≥ 3, and that the root P-node of T has three or more children. Then
the pertinent digraph G(x) of each node x is the subgraph of G induced by the
edges corresponding to all descendant Q-node of x. Based on the assumption
that ∆(G) = 3, the following facts hold [REN05].

Fact 1 Let (s, t) be the reference edge of an S-node x of T , and let x1, x2, · · ·, xk

be the children of x in this order from s to t. Then

(i) each child xi of x is either a P-node or a Q-node;
(ii) both x1 and xk are Q-nodes; and
(iii) xi−1 and xi+1 must be Q-nodes if xi is a P-node where 2 ≤ i ≤ k − 1.

Fact 2 Each non-root P-node of T has exactly two children. A child of a non-
root P-node can be an S- or a Q-node.

A P-node in an SPQ-tree T is primitive if it does not have any descendant
P-node in T . Let x be a primitive P-node in T . Let xl and xr be the left
and right child of x in T respectively. Then the underlying undirected graph of
G(x) = G(xl) ∪ G(xr) is a cycle and hence the digraph G(x) is upward planar
[HL05]. Therefore, the pertinent digraph G(x) of every primitive P-node x in T
is always upward planar. We define that the height of a primitive P-node is zero.
The height of any other P-node is (i + 1) if the maximum of the heights of its
descendant P-nodes is i. The P-node P3 in Fig. 4(b) is a primitive P-node. The
heights of the other two P-nodes P2 and P1 in Fig. 4(b) are 1 and 2 respectively.

Let G be a planar digraph. A drawing Γ of G is an upward planar drawing
if it has no edge-crossing and all the edges of G are drawn as simple curves
monotonically increasing in the vertical direction. G is an upward planar digraph
if G admits an upward planar drawing. One can observe that the following lemma
holds for an upward planar digraph G.

Lemma 1. A digraph G is upward planar if and only if every subgraph H of G

is upward planar.

Let G be a digraph with a fixed planar embedding. A vertex v of G is bimodal
if the circular list of edges incident to v can be partitioned into two (possibly
empty) lists, one consisting of incoming edges and the other consisting of outgo-
ing edges. If all vertices of G are bimodal then G is called bimodal. Acyclicity and
bimodality are necessary conditions for the upward planarity of an embedded
planar digraph [BDLM94]. However, they are not sufficient conditions.

Let f be a face of an embedded planar bimodal digraph G and suppose that
the boundary of f is visited clockwise if f is an inner face, and counterclockwise
if f is the outer face. Let α = (e1, v, e2) be a triplet such that v is a vertex of
the boundary of f and e1, e2 are two incident edges of v that are consecutive on
the boundary of f . Triplet α is called an angle of f . We call an angle α a switch
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angle of f if either the direction of e1 is opposite to the direction of e2 on the
boundary of f or e1 and e2 coincide. Note that if e1 and e2 coincide then G is
not biconnected. If e1 and e2 are both incoming in v, then α is a sink-switch of
f and if they are both outgoing, then α is a source-switch of f . A source or a
sink of G is called a switch vertex of G and a vertex that is not a switch vertex
is called an ordinary vertex of G. In the remainder of this paper we refer to a
switch angle of a face f by calling it simply a switch of f .

Let G be an embedded planar digraph. Let Γ be an upward planar drawing
of G and let α be an angle of a face f of G. We assign a label F to the angle α in
face f if α is not a switch of f . Otherwise α is a switch of f , and we label α in f

with a letter L if α has a value greater than π in Γ and with a letter S if the value
of α in Γ is less than π. We assign labels to all angles of G as mentioned above
and obtain a labeled embedded digraph. We call this labeled embedded digraph
an upward planar representation of G and denote it by UG. The drawing Γ is
said to be an upward planar drawing that preserves UG [DGL06]. Figure 5(b)
illustrates UG of the graph G in Fig. 5(a) for the upward planar drawing Γ in
Fig. 5(c). It is mentionable that any arbitrary labeling of the switches of G may
not have a corresponding upward planar drawing and hence may not be regarded
as an upward planar representation of G. The conditions which must be met in
order to obtain UG are described below.
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Fig. 5. Illustration of upward planar representation and upward planar drawing.

Let G be a digraph with a fixed planar embedding. Let Φ be an assignment
which assigns a label of either L, S, or F to each angle of every face of G. For
vertex v of G, we denote by L(v), S(v), and F (v) the number of angles at v that
Φ labels with L, S, and F respectively. For a face f of G, we denote by L(f),
S(f), and F (f) the number of angles of f that are labeled by Φ with L, S, and
F respectively. We call the assignment Φ an upward consistent assignment if the
following two conditions hold for Φ:

(i) for each switch vertex v of G, L(v) = 1, S(v) = deg(v) − 1, F (v) = 0, and
for each ordinary vertex v of G, L(v) = 0, S(v) = deg(v)− 2, F (v) = 2; and

(ii) for each inner face f , S(f)−L(f) = 2 and for the outer face f , S(f)−L(f) =
−2.



Upward Planar Drawings 35

(a)

e1

e3

e2

e8

e10

e11

e13

e9

e12

e4

e5

e17

e7

e18

e19

e16e15

e14

e6

e10e9e8

e13e12e11Pr(x1) :

Pl(x1) :

(d)

e16e15e14e6
e7Pr(yp) :

e10e9e8e4
e5Pl(yp) :

(e)

Pl(r) :

(f)

e10e9e8e4
e5Pr(r) = Pl(yp) :

e3e2e1

y3y1

r

e9 e12e10 e11 e13

e14 e16e15

e17 e18 e19e8

P P

SS S

S S S S

P

T

(c)

r

y2 y3

ypy1y2

e1 e2 e3

e4 x1 e5 e6 x2 e7

x3 x4 x5 x6

T ′

(b)

Fig. 6. (a) A biconnected series-parallel graph G, (b) an SPQ-tree T of G, (c) T with
a dummy P-node yp, (d)–(f) pole-paths of node x1, yp and r respectively.

One can intuitively understand the necessity of conditions (i) and (ii) for
an upward planar drawing. Condition (i) must hold due to the necessity of bi-
modality, while condition (ii) must hold due to basic geometric consideration for
upward planarity. Conditions (i) and (ii) are also sufficient for upward planarity
of G as stated in [DGL06]. Hence the following lemma holds.

Lemma 2. Let G be an acyclic planar bimodal embedded digraph such that each
angle of G is assigned a label L, S or F under some assignment Φ. Then the
labellings of the angles in G define an upward planar representation UG of G if
and only if Φ is upward consistent.

Given an upward planar representation UG of G, it is always possible to
construct an upward planar straight-line drawing of G in linear-time [DGL06].

3 Feasible Labellings

In this section, we introduce the notion of “feasible set” of values for labelling
the angles of G to obtain an upward planar embedding of G.

Let T be a given SPQ-tree of G with a P-node r as its root. Then r has
three children and every other P-node of T has exactly two children. Let y1, y2

and y3 be the three children of r. We insert a dummy P-node yp as a child of
r and make y2 and y3 the two children of yp. Let T ′ be the resulting tree (see
Fig. 6(b) and (c)). Every P-node of T ′ has exactly two children and the poles
of r and yp in T ′ are the same now. For any two P-nodes z1 and z2 in T ′, we
say that z1 is the parent P-node of z2 (equivalently, z2 is a child P-node of z1) if
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z2 is a descendant of z1 and there is no other P-node between z1 and z2 on the
z1, z2-path in T ′. By this definition, yp is a child P-node of r.

Let x be a P-node with poles u, v. Let xl and xr be the left and right child of
x respectively. We define two edge-disjoint u, v-paths Pl(x) and Pr(x) as follows:

(i) if x is primitive, then each of G(xl) and G(xr) is a path. In this case, Pl(x) =
G(xl), Pr(x) = G(xr) (see Fig. 6(d)).

(ii) if x is not primitive and is not the root of T , then let y denote a child P-node
of x in the left subtree of x and y′ denote a child P-node of x in the right
subtree of x. In this case, Pl(x) will consist of all the child Q-nodes of xl

and Pl(y), for each child P-node y in the left subtree. Similarly, Pr(x) will
consist of all the child Q-nodes of xr and Pl(y

′), for each child P-node y′ in
the right subtree (see Fig. 6(e)).

(iii) if x is the root of T , then xl is either an S- or a Q-node and xr is the dummy
P-node. In this case, Pl(x) is defined as in case (ii) above and Pr(x) = Pl(xr).
(see Fig. 6(f)).

We call each of Pl(x) and Pr(x) a pole path of x. In the remainder of this paper,
we use C(x) to denote the cycle Pl(x) ∪ Pr(x) and F (x) to denote the face
bounded by C(x). Let x be a non-primitive P -node in T and y denote a child
P -node of x. We call a switch of F (x) a free switch of F (x) if the switch is
neither on Pl(y) nor at the poles of y for any child P -node y of x.

We now introduce the notion of feasible labeling of Pl(x) and the feasible set
of a P -node x in T . Let UG(x) be an upward planar representation of G(x). Then
an upward planar representation of C(x) can be obtained from UG(x). This can
be done by simply deleting all those vertices and edges of G(x) which are not
in C(x). Let UC(x) denote this upward planar representation of C(x) and Φ be
the corresponding upward consistent assignment. Let L(x) and S(x) denote the
number of L- and S- labels assigned by Φ to those switches of F (x) which are
on the path Pl(x). If L(x) = p and S(x) = p + q, then S(x) − L(x) = q. We
say that q is a feasible value of S − L for labeling the switches of F (x) on path
Pl(x). Let Feasible(x) denote the set of all feasible values of S − L for labeling
the switches on path Pl(x). We regard Feasible(x) as the feasible set of the P -
node x. An assignment of labels to the switches on Pl(x) is a feasible labeling of
Pl(x) if S(x)−L(x) = q for some q ∈ Feasible(x). The following fact follows the
definition of feasible labeling.

Fact 3 For a given feasible value q ∈ Feasible(x), there is a corresponding up-
ward planar representation of G(x).

Let x be a non-primitive P-node in T and y be a child P -node of x in T .
Since G(y) is a subgraph of G(x), given UG(x) we can obtain an upward planar
representation UG(y) of G(y) and hence the following fact holds.

Fact 4 For a given feasible value q ∈ Feasible(x), there is a corresponding fea-
sible value q′ ∈ Feasible(y) for each child P-node y of x.

We now have the following lemma.
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Lemma 3. G(x) has an upward planar representation if and only if Pl(x) can
be given a feasible labeling.

Proof. Necessity. The necessity of the condition follows from the definition of
feasible labeling.

Sufficiency. Let us assume that Pl(x) is given a feasible labeling according
to a feasible value q ∈ Feasible(x). Then it follows from Fact 3 and Fact 4 that
there exists an assignment Φ of S- and L- labels to the switches of F (x) such that
a) Pl(x) is labeled according to the feasible value q, b) for each child P -node y of
x, Pl(y) receives a feasible labeling, c) for each y, switches of F (x) at the poles
of y (if any) are assigned labels in such a way that Pr(y) can be embedded inside
the face where Pl(y) is given a feasible labeling, and d) S(F (x)) − L(F (x)) = 2
from the definition of upward consistent assignment. Since Φ exists, one can find
it by trying each value from the feasible set Feasible(y) of each child P -node
y. Then this same process may be applied recursively on Pl(y) for each child
P -node y of x and finally UG(x) can be computed.

Q.E .D.

We immediately get the following corollary from Lemma 3.

Corollary 1. Let x be a P -node in T . Then the pertinent digraph G(x) of x

has no upward planar representation if and only if the set Feasible(x) is empty.

Let u be a pole of y such that there is a switch angle ux of F (x) at vertex u.
As mentioned in condition (c) in the proof of Lemma 3, we need to label ux in
such a way that Pr(y) can be embedded inside the face in which Pl(y) is given a
feasible labeling. At the same time, we must also ensure that the labeling of the
switches at vertex u satisfies condition (i) of an upward consistent assignment.
Since ∆(G) = 3 and G is biconnected, the degree of every vertex in G is either
two or three. Any label assigned to a switch at a vertex of degree two of G

always satisfies condition (i) of upward consistent assignment. We therefore need
to concentrate on labeling the switches at the vertices of degree three of G. Since
G is a series-parallel digraph, only the poles of the P-nodes of T can have degree
three. In regard to labeling the switches at the poles of the P-nodes of T , we
have the following lemma.

Lemma 4. Let x and y be two P-nodes in T such that x is the parent of y. Let
u be a pole of y such that there is a switch angle ux of F (x) at vertex u. Then
ux must be labeled with an L-label when Pr(y) is embedded inside the face F (x)
and with an S-label when Pr(y) is embedded in the exterior of the face F (x) if
the following (a) or (b) hold.

(a) u is an ordinary vertex of G and,
(b) u is a switch vertex of G and either Pr(y) is embedded inside the face F (x)

with a large angle at the switch of F (y) at pole u or Pr(y) is embedded in the
exterior of the face F (x) with a small angle at the switch of F (y) at pole u.

We have omitted the proof of Lemma 4 in this extended abstract. In each
of the two cases of Lemma 4, we define u as an L-pole of node y. The following
lemma is a direct consequence of Lemma 4.
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Lemma 5. Let x and y be two P-nodes in T such that x is the parent of y in
T . If both the poles of y are L-poles, then in order to obtain an upward planar
drawing, both the switches of F (x) at the poles of y must be assigned the same
label.

The labels assigned to the switches (if any) of F (y) at the poles of y play
important roles in upward planarity testing as described in the following facts.

Fact 5 Let a switch vertex u of G be a pole of node y, and let uy be the switch
angle of F (y) at pole u. Then u is an L-pole of node y if (a) uy is labeled with
L and F (y) is embedded as an inner face, and (b) uy is labeled with S and F (y)
is embedded as the outer face.

Fact 6 Let an ordinary vertex u of G be a pole of node y. Let u contain a switch
angle of F (y). Then (a) F (y) must be embedded as the outer face if uy is labeled
with L, and (b) F (y) must be embedded as an inner face if uy is labeled with S.

We omit the proofs of Fact 5 and Fact 6 here since the facts are intuitive conse-
quences of the definition of L-poles.

Let x be a P-node of T and y be a child P -node of x. We now define a
legitimate labeling for node y which will be used extensively throughout the
remainder of this paper. A labeling of the switches of F (x) on Pl(y) and at the
poles of y is called a legitimate labeling for node y if the following (a) and (b) hold:
(a) Pl(y) is given a feasible labeling and (b) if a pole u of y is an L-pole then the
labeling of ux satisfies Lemma 4, otherwise both S and L labels are considered
for labeling ux. In the remainder of this paper, we use Legitimate(y) to denote
the set of values of S −L inside F (x) corresponding to a legitimate labeling for
node y. We define a labeling of the switches on Pr(x) to be a legitimate labeling
of Pr(x) if it performs a legitimate labeling for each child P -node y of x in the
right subtree of x and it considers both S and L labels for the free switches on
Pr(x). We similarly define a legitimate labeling of Pl(x). In the remainder of this
paper, we use qr and ql to denote the value of S−L inside F (x) for a legitimate
labeling of Pr(x) and Pl(x), respectively, and we use qpole to denote the value
of S − L inside F (x) for labeling the switches (if any) of F (x) at the two poles
of x. We say that 2 − (qpole + qr) is a possible feasible value of x. If we can find
a legitimate labeling of Pl(x) for which ql = 2 − (qpole + qr), then ql will be a
feasible value of node x and will be included in the feasible set Feasible(x) of x.

As stated earlier, our objective is to compute Feasible(x) for each P-node
x in T . Given Feasible(y) for each child P-node y of x, we can always com-
pute Feasible(x). For this purpose, one should find each possible assignment of
labels to the switches of F (x) that ensures the conditions (b)–(d) mentioned
in the proof of Lemma 3. Any algorithm following a brute-force approach to
accomplish this would yield exponential time complexity. The approach for con-
structing UG(x) outlined in the proof of Lemma 3 would also yield exponential
time complexity. In our algorithm which we describe in the next section, we show
that we can compute Feasible(x) in linear-time by using the concepts introduced
thus far. Furthermore, if G(x) is upward planar, then we can also obtain UG(x)

in linear-time.
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4 An Upward Planar Drawing Algorithm

In this section we give a linear-time algorithm to test the upward planarity of
a biconnected series-parallel digraph G with ∆(G) = 3. If G is upward planar,
then we also construct an upward planar representation of G in linear-time. An
outline of our algorithm is given below.

Our algorithm consists of two phases, namely, the testing phase and the
construction phase. In the testing phase, we traverse the P-nodes of T in a
bottom-up fashion and at each P-node x, we test the upward planarity of G(x).
For this purpose, we compute the feasible set Feasible(x) of node x. If x is
primitive, then computing Feasible(x) is quite straight forward. On the other
hand, if x is non-primitive, then we can compute Feasible(x) from the feasible
sets of the child P-nodes of x. If we succeed in this bottom-up traversal to
find Feasible(r), where r is the root of T , then we declare G as an upward
planar digraph and start our second phase in which we construct an upward
planar representation of G. On the other hand, if we find that Feasible(x)= ∅
for any P-node x in T , then from Corollary 1 and Lemma 1, we declare that G

is not upward planar. One can easily understand that if we consider only the
combinatorial embeddings of the skeleton of each P-node of T , then our decision
regarding the upward planarity of G that we make in a single traversal of T
may be incorrect. Therefore, we ensure that our method considers every planar
embedding of the skeleton of each P-node of T ; nevertheless, our algorithm
achieves linear-time as we will show in this section.

In the construction phase, we perform a top-down traversal of the P-nodes
of T . We start the construction phase with a feasible labeling of Pl(r) where r

is the root of T . Then in a top-down traversal of T , at each P-node x we assign
labels to the switches of F (x) such that the assignment satisfies conditions (a)–
(d) given in the proof of Lemma 3. This procedure is carried on the basis of
information gathered in the testing phase. At the end of this traversal we obtain
the final upward planar representation UG of G.

We now start with the description of our procedure to determine the feasible
set of a primitive P-node. Let x be a P-node in T . In the remainder of this paper,
we use the symbols nr, nl and nx to denote the number of switches of F (x) on
the path Pr(x), on the path Pl(x) and at the two poles of x, respectively. We also
adopt the notation [low .. high] to denote the set of integers in which the numbers
are listed in ascending order and the first number is low, the last number is high

and if not mentioned explicitly, the periodicity of the numbers is 2. Let x be a
primitive P-node and q be a possible feasible value of x. Then q will be a feasible
value of x and included in Feasible(x) if |q| ≤ nl. Let I0 = [−nr + 2 .. nr + 2],
I− = [−nr +(2−nx) .. nr +(2−nx)] and I+ = [−nr +(2+nx) .. nr +(2+nx)].
Then we have the following lemmas regarding the possible feasible values of a
primitive P-node x in T whose proofs are omitted in this extended abstract.

Lemma 6. Let x be a primitive P-node of T . Let Iinner and Iouter be the set of
possible feasible values of node x for embedding F (x) as an inner face and the
outer face, respectively. Then the following (a) and (b) hold.
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(a) Iinner = Iouter = I0 = [−nr + 2 .. nr + 2], if nx = 0; and
(b) Iinner = I− = [−nr + (2 − nx) .. nr + (2 − nx)] and Iouter = I+ = [−nr +

(2 + nx) .. nr + (2 + nx)], if nx > 0 and each of these nx poles of x is an
ordinary vertex of G.

Lemma 7. Let x be a primitive P-node of T . Let Iinner and Iouter be the set of
possible feasible values of node x for embedding F (x) as an inner face and the
outer face, respectively. If nx = 2 and one of the two poles of x is a switch vertex
of G and the other is an ordinary vertex of G, then the following (a) and (b)
hold.

(a) Iinner = I− ∪ I0 = [−nr .. nr + 2] and Iouter = I+ ∪ I0 = [−nr + 2 .. nr + 4];
and

(b) For every q ∈ I0, the pole of x which is also a switch vertex of G is an
L-pole.

Lemma 8. Let x be a primitive P-node of T . Let Iinner and Iouter be the set of
possible feasible values of node x for embedding F (x) as an inner face and the
outer face, respectively. If nx > 0 and each of these nx poles of x is a switch
vertex of G, then the following (a)–(d) hold.

(a) For nx = 1, Iinner = Iouter = I− ∪ I+ and for nx = 2, Iinner = Iouter =
I− ∪ I+ ∪ I0.

(b) For every q ∈ I−, each of the nx poles of x is an L-pole if F (x) is embedded
as the outer face.

(c) For every q ∈ I+, each of the nx poles of x is an L-pole if F (x) is embedded
as an inner face.

(d) For every q ∈ I0, one of the poles of x is an L-pole if nx = 2.

Having computed the feasible set for a primitive P-node, we now proceed
towards the computation of feasible set of any P-node in T . To compute a
feasible value for a non-primitive P-node x in T , we must ensure that for every
child P-node y of x, we are performing a legitimate labeling. Therefore, we first
demonstrate how we can find the set Legitimate(y) for child P-node y of x. Let
q ∈ Feasible(y). By giving a feasible labeling to Pl(y) satisfying q ∈ Feasible(y),
we can obtain three possible embeddings of F (y) as shown in Fig. 7(b)–(d). In
Fig. 7(b) and (c) F (y) is embedded as an inner face. Hence, in these two cases,
exactly one of Pr(y) and Pl(y), but not both, appears at the outer face. On
the other hand, in Fig. 7(d), F (y) is embedded as the outer face, and hence
both Pl(y) and Pr(y) have been drawn drawn at the outer face. From a more
theoretical point of view, the three figures in Fig. 7(b)–(d) actually correspond
to three possible planar embeddings of the skeleton of node y. We can discard
the other three possible planar embeddings of the skeleton of node y because
they are just the mirror reflections of the three embeddings shown. In order to
obtain an embedding as shown in Fig. 7(b) we have to label the switches on
Pl(y) in such a way that the labels of these switches yield S−L = −q inside face
F (x). Similarly, in order to obtain the embeddings shown in Fig. 7(c) and (d)
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Fig. 7. Three possibilities to consider from P -node x to embed the facial cycle F (y).

the labels of the switches on Pl(y) should yield S − L = q inside face F (x). We
can determine the legitimate values of S −L inside F (x) for the three scenarios
shown in Fig. 7 by considering the following three possible cases: (i) Both the
poles of y are L-poles: for the three embeddings in Fig. 7(b)–(d), we should have
2 − q, −2 + q, 2 + q respectively as the value of S − L inside F (x). (ii) Exactly
one of the poles of y is an L-pole: we should have 1−q, −1+q, 1+q respectively
for the embeddings in Fig. 7(b)–(d). (iii) None of the poles of y is an L-pole: we
should have −q, +q, +q respectively for the embeddings in Fig. 7(b)–(d). For
the cases (ii) and (iii), if a pole of y contains a free switch of F (x), then the
value of S −L inside F (x) for labeling that switch would be ±1, since it can be
assigned either of the two possible labels.

We now show how we can compute Legitimate(y) when y is a primitive
P-node. In the following we first consider only the legitimate values resulting
from embedding F (y) as an inner face. Let qm denote the maximum of these
legitimate values. In Lemma 10 we show that, if F (y) is embedded as the outer
face, then at most two new legitimate values can be obtained, namely, qm+2 and
qm + 4. We have seen in Lemma 6, 7 and 8 that the set of feasible values which
can be satisfied for embedding F (y) as an inner face is of the form: [lo .. hi]. We
now have the following lemma regarding the legitimate values for a primitive
P-node y when F (y) is embedded as an inner face.

Lemma 9. Let y be a primitive P-node in T and x be the parent P-node of y in
T . Let nLpole denote the number of L-poles of node y. Let Feasible(y)= [lo .. hi]
and k denote the number of switches of F (x) at those poles of y which are not
L-poles. Then for embedding F (y) as an inner face the following (a) and (b)
hold.

(a) If lo = hi = 0 and nLpole = 2 then Legitimate(y)= {−2, +2}; and
(b) Otherwise, Legitimate(y)= [−(max + k) .. (max + k)], where max is the

maximum of |nLpole − lo| and |nLpole − hi|.

We now have the following lemma regarding the legitimate values of a prim-
itive P-node x when F (x) is embedded as the outer face.
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Lemma 10. Let x be a primitive P-node in T . Let qm be the maximum of all the
legitimate values obtained by embedding F (x) as an inner face. Then at most two
new legitimate values, namely, qm + 2 and qm + 4 can be obtained by embedding
F (x) as the outer face.

In the following lemma, we address the issue of computing Feasible(x) for a
non-primitive P-node x in T .

Lemma 11. Let x be a non-primitive P-node in T . Let y1, . . . , yl be the child
P-nodes of x in T . Then Feasible(x) can be computed from Feasible(y1), . . . ,
Feasible(yl).

Proof. Let y1, y2, . . . , yleft be the child P-nodes in the left subtree of x and
y′

1, y
′

2, . . . , y
′

right be the child P-nodes in the right subtree of x. Let h denote the
height of the P-node x in T . We prove the claim by induction on h.

We first assume that h = 1. Then every child P-node of x is primitive. Let y

be a child P-node of x. According to Lemma 6, 7 and 8, y has two types of feasible
values, namely, the feasible values satisfying which F (y) can be embedded as an
inner face and the feasible values satisfying which F (y) can be embedded as the
outer face. Among all the child P-nodes y of x, for at most one y, we can embed
F (y) as the outer face since planarity would be violated otherwise. Hence, for
each y, we first consider those values from Feasible(y) satisfying which we can
embed F (y) as an inner face, later we handle the feasible values satisfying which
we can embed F (y) as the outer face.

As we have shown in Lemma 9, if yi is a child P -node of x in the left subtree
of x, then the set of legitimate values for embedding F (y) as an inner face is
[−pi .. pi] with a periodicity of either 2 or 4 for some integer pi (1 ≤ i ≤ left).
Similarly, if y′

i is a child P -node of x in the right subtree of x, then the set
of legitimate values for embedding F (y) as an inner face is [−p′i .. p′i] with a
periodicity of either 2 or 4 for some integer p′i (1 ≤ i ≤ right). Let p′ denote
the number of free switches of F (x) on path Pr(x). Since a labeling of each of
these free switches can yield S − L = ±1 inside F (x), we would have [−p′ .. p′]
as the set of values for labeling these switches. Therefore, the set of legitimate
values for a labeling of Pr(x) will be of the form [−(p′ +

∑
p′i) .. (p′ +

∑
p′i)]

with a periodicity of either 2 or 4. Taking k = p′ +
∑

p′i, we can obtain [−k .. k]
as the set of legitimate values for a labeling of Pr(x). From this set of values,
we can obtain the set of possible feasible values of x (i.e., we can obtain Iinner

and Iouter) exactly in the same way as we have described in Lemma 6, 7 and 8.
It now remains to determine which of these possible feasible values will be the
feasible values of x. For this purpose, we first determine the legitimate a labeling
of Pl(x) exactly in the same way as we determined the legitimate values for a
labeling of Pr(x). Every possible feasible value of x which is also a legitimate
value for a labeling of Pl(x), will be a feasible value of x and hence, will be
included in Feasible(x). It is mentionable that, in this computation, we do not
need to check every value from the former set with every value of the latter set.
Rather, we can obtain the whole information in time O(1) from the periodicity
and the first and last values of these two sets. Having computed Feasible(x), we
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can compute Legitimate(x) for embedding F (x) as an inner face as illustrated in
Lemma 9 for a primitive P-node and we can also compute the possible changes
in these legitimate values if F (x) is embedded as the outer face as illustrated in
Lemma 10 for a primitive P-node.

We now consider those feasible values of each child P -node y of x satisfying
which F (y) can be embedded as the outer face. We said previously that any
such embedding can increase the legitimate values for y by at most +2 and +4.
Hence, regardless of the choice of y, any such embedding can cause a change
of i ∈ {±2,±4} in the legitimate values for x. Let External(x) be the set of
possible changes in the legitimate values for x if F (x) or F (z) is embedded as
the outer face where z is a descendant P-node of x. Then External(x)⊆ {i + j :
i ∈ {±2,±4} and j ∈ {2, 4}} = [−2 .. + 8]. Along with Legitimate(x), we pass
this set of possible changes to the parent P-node of x in T .

We next assume that h > 1 and that the children of x have handed the
following two quantities to x. (i) Legitimate(y) for every child P-node y of x and
(ii) the possible changes in the legitimate values for node y that can be obtained
by embedding either F (y) as the outer face, or F (z) as the outer face where z

is a descendant P-node of y. In a manner exactly similar to the case for h = 1,
we can compute the feasible values of x first by considering only those feasible
values of each child P-node y of x which can be satisfied while embedding F (y) as
an inner face. From this we determine the set Legitimate(x). Next we determine
the possible changes in the legitimate values for node x that are obtainable by
embedding either F (x) as the outer face, or F (z) as the outer face where z is
a descendant P-node of x. By doing so, we have again equipped ourselves with
Feasible(x) and also with the above two quantities (a) and (b) which we would
pass to the parent of x if x is not the root of T , or if x is the root of T , then
we can start our second phase of constructing UG by using a feasible value from
Feasible(x). Q.E .D.

We call the algorithm outlined in the proofs of Lemma 6, Lemma 7, Lemma 8
and Lemma 11 Algorithm UP-Tester. We now have the following theorem.

Theorem 1. Let G be a series-parallel digraph with ∆(G) ≤ 3. Then the upward
planarity of G can be tested in linear-time.

Proof. Let T be the SPQ-tree of G. From Lemma 6, Lemma 7, Lemma 8 and
Lemma 11, we can find Feasible(x) for any P-node x in T by applying Algorithm
UP-Tester. If UP-Tester finds Feasible(x) = ∅, then from Corollary 1, G(x)
is not upward planar and hence, from Lemma 1 G itself is not upward planar.
We can show that the operations required by Algorithm UP-Tester to compute
the feasible sets of all the P-nodes of T can be performed in time linear to the
number of P-nodes in T . The details of these computations are omitted in this
extended abstract. Since the number of P-nodes of T is linear in the number of
vertices of G, the upward planarity of G can be tested in time O(n). Q.E .D.

Finally, we give the following theorem regarding the construction of an up-
ward planar representation of G, UG.
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Theorem 2. Let r be the root of the SPQ-tree T of G. If G is upward planar,
then starting with a feasible labeling of Pl(r), an upward planar representation
of G can be constructed in linear-time.

Proof. Our proof is constructive. We show here how we can perform a feasible
labeling of Pl(y) for each child P -node y of x given that Pl(x) has been labeled
with a feasible value. Let q be the feasible value satisfied for labeling Pl(x). If
q requires that for some descendant P-node z of x, F (z) should be embedded
as the outer face, then at first we determine that P-node. Depending on the
satisfied feasible value q, we know what labels should be assigned to the switches
(if any) at the poles of x. Hence we label the switches (if any) at the poles
of x. Let S − L = qp inside F (x) for the labels assigned to the switches (if
any) at the poles of x. As shown in the proof of Lemma 11, we can easily
compute the sets Legitimate(y) that altogether yielded the set Feasible(x). Let
the set of all possible values for labeling the switches on Pl(x) be [l .. h]. Then
let i = h − q. We iterate through each of the computed legitimate sets. Let
Legitimate(y) =[ly .. hy]. If i > (hy − ly) then we satisfy the feasible value
corresponding to ly for node y and reduce i by hy − ly. Then we proceed with
the next node. When we find i ≤ (hy − ly) at a node y, we satisfy the feasible
value corresponding to (hy − i) for that P-node. For each of the remaining P-
nodes in the left subtree of x, we satisfy the feasible value corresponding to hy.
We then perform the same operations in order to satisfy the value 2 − q − qp

for the switches on Pr(x). Clearly, the whole tree can be traversed in linear-time
while performing these operations at each x while the completion of the traversal
indicates that we have obtained an upward planar embedding of G in which the
switches have been labeled according to an upward consistent assignment. This
completes the proof of the claim. Q.E .D.

5 Conclusion

In this paper, we gave a simple linear-time algorithm to test upward planarity
and in the positive case, obtain an upward planar drawing of a series-parallel
digraph with the maximum degree three. Since our attention was confined to
series-parallel digraphs with the maximum degree three, it looks difficult to ex-
tend this algorithm in a straight forward way for more general classes of digraphs
and also for series-parallel digraphs with higher degrees. It is left as a future work
to find other characterizations of upward planarity of series-parallel digraphs and
devise efficient algorithms for upward planarity testing and upward planar draw-
ings of series-parallel digraphs with higher degrees.
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