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76821 Mont Saint-Aignan Cedex, France
3 {csi, sohel}@dcs.kcl.ac.uk

4 laurent.mouchard@univ-rouen.fr

Abstract. In this paper, we consider the pattern matching problem in
DNA and RNA sequences where either the pattern or the text can be
degenerate i.e. contain sets of characters. We present an asymptotically
faster algorithm for the above problem that works in O(n log m) time,
where n and m is the length of the text and the pattern respectively. We
also suggest an efficient implementation of our algorithm, which works
in linear time when the pattern size is small. Finally, we also describe
how our approach can be used to solve the distributed pattern matching
problem.
Keywords: algorithm, degenerate, DNA/RNA sequence, pattern match-
ing.

1 Introduction

While most of the biology labs are using dedicated high-throughput equipments
to produce large DNA sequences on a daily basis, the need for automatic anno-
tation and content analysis is greater everyday. Unfortunately, the quality of the
automatically-obtained sequences is sometimes questionable: among the factors
that are impacting the quality, we can cite at least the intrinsic limitations of
the equipments and the natural polymorphism that can be observed between
individual samples (e.g. a Simple Nucleotide Polymorphism, that is a unique
mutation, can either stop the traduction of a mRNA into a protein sequence,
or create a binding site for a protein complex that will prevent the complete
formation of the functional protein [6, 18]). Analyzing these uncertain sequences
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is therefore much more complicated than the traditional problem, where given
a pattern P and a text T , the pattern matching problem is to find all the oc-
currences of P in T . There exist, for decades, efficient algorithms that solve this
problem [2, 17] but in our case, some positions in the pattern or the text can
contain a set of characters (like the IUB alphabet for example [23]), instead of
a single letter. Most of the existing exact methods are useless, or have to be
adapted in a dramatic way, reducing their efficiency. Designing new efficient al-
gorithms that can tackle these specific requirements is therefore a must.

In this paper, we present an asymptotically faster algorithm for finding pat-
terns, where either the pattern or the text can be degenerate i.e. each symbol
is a set of characters. Our algorithm for DNA and RNA sequences works in
O(n log m) time, where n and m is the length of the text and the pattern re-
spectively. We also suggest an efficient implementation of our algorithm, which
works in O(n + m + n⌈m

w
⌉ + ⌈ n

w
⌉) time, where w is the word size of the target

machine. It is easy to observe that for patterns having length similar to the
word size (i.e. m ∼ w) this running time would be linear. It may also be noted
here that there are numerous practical examples of such cases since typical word
size now a days is as high as 64. Finally, we also show how our approach can
be used to solve the distributed pattern matching problems introduced in [9]
and handled in [12]. The rest of the paper is organized as follows. In Section 2,
we present the vocabulary and the notions that will be used in this paper, in
Section 3, we present a brief literature review. In Sections 4 and 5, we present
our approach and in Section 6 we show how we can use our idea to solve the
distributed pattern matching problem. Finally, we conclude in Section 7.

2 Preliminaries

In what follows, we are considering a finite alphabet Σ. For DNA sequences, we
have Σ = {A, T, C, G} and for RNA sequences Σ = {A, U, C, G}. Assume that
we are given a text T = T1 . . .Tn of length n and a pattern P = P1 . . .Pm of
length m.

The classical pattern matching problem consists in locating all the occur-
rences of P in T , that is, all possible i such that for all j in [1, m], T [i+ j− 1] =
P [j]. This problem can be extended in a very interesting way by considering
degenerate strings, which means that the strings T or/and P are built over the
potential 2|Σ| − 1 non-empty sets of letters belonging to Σ. Note that in the
literature, strings containing sets of characters are also referred to as indeter-

minate strings. In what follows, the set containing A and T will be denoted by
[AT ] and the singleton [C] will be simply denoted by C for ease of reading.

Now let us define the problems more formally.
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Problem 1. We are given a degenerate text T and a pattern P . The problem is
to find all the occurrences of P in T i.e. to find all i such that for all j in [1, m],
P [j] ∈ T [i + j − 1].

Fig. 1. An example of conserved gene sequence across species

In Figure 1, we are presenting an example of a degenerate text, that is the
alignment of the five sequences, from different organisms, for one specific gene.
The percentage of similarity between these five sequences is very high, most of the
nucleotides being conserved (the grey columns correspond to positions where the
nucleotides are species-dependent), a consensus built upon these sequences may
be represented by [CT ]C[CT ]T [AC]TCT [GT ] . . .. So, instead of finding a pattern
separately in each of these sequences, it is natural and, perhaps, more efficient
to find the pattern in the consensus sequences which gives us the motivation to
solve Problem 1 efficiently.

Problem 2. We are given a text T and a degenerate pattern P . The problem is
to find all the occurrences of P in T i.e. to find all i such that for all j in [1, m],
T [i + j − 1] ∈ P [j].

The motivation to solve Problem 2 is as follows. Most of the sites the protein
complexes are binding to, may be represented by degenerate words, e.g. the basic
elements of a translation initiation site in E. coli, most conveniently represented
as their DNA counterparts, may be 5’-

[GA][GA]GGGNNNNAN [CT ]ATGNN [AT ]NNNNN [CTG]

-where N is the don’t care symbol replacing all other letters (adapted from [26]).
Note also that NAGNAG is the major form of alternative 3’ splice sites account-
ing for 50% of the cases and are used for detecting intron/exon boundary [3].

Remark 1. It is clear that Problem 1 and Problem 2 differ only in whether the
pattern or the text contains sets of characters. The reason we distinguish between
the two problems will be clear as we proceed. We should, however, point out that
this paper doesn’t deal explicitly with the case where both text and pattern are
degenerate.

Example 1. Suppose we have a text T and a degenerate pattern P :
T = A C C G G A A G T A A G T C G T A A A T
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P = [AC] G [CGT ] A A [ACGT ] T

P [1] can match either A or C in the T whereas P [3] can match either C, G
or T in T . Finally, P [6] can match any letter in the text and is named a don’t
care symbol. It can easily be verified that in this case we have three occurrences
of P in T , starting at positions 3, 7 and 14.

In this paper, we present algorithms to solve both Problem 1 and 2. It may be
noted here that Problem 1 can be easily reduced to the subset matching problem

as defined below.

Problem 3. We are given a degenerate text T and a degenerate pattern P . The
problem is to report all the occurrences of P in T . The pattern is said to occur
at text position i if for all j in [1, m], P [j] ⊆ T [i + j − 1].

Remark 2. Note that Problem 3 is different from the natural extension of Prob-
lem 1 and 2 where both the text and pattern are degenerate. The difference
comes from the different notion of match used in Problem 3. As an example let
P [i] = [AC] and T [j] = [CT ]. Although we have P [i]∩T [j] = [C] 6= ∅ according
to Problem 3 its not a match because P [j] * T [i + j − 1]. Note however that we
have a match if T [j] = [ACT ].

Problem 3 was first introduced in [7] where the authors presented a O((n +
s)
√

m log m) time5 algorithm to solve the subset matching problem where s is
the sum of the text and pattern set sizes. Later, in [8], a O(n log3 n) algorithm
to solve the problem was also devised.
It is easy to note that Problem 1 can be seen as a special case of Problem 3
where each of the position of the pattern P is a singleton set. Therefore, we can
easily solve Problem 1 using the algorithms presented in [7, 8]. However, inspired
by a technique used in [7] to solve a subproblem, we will present an approach to
solve both Problem 1 and 2 which will give an asymptotically faster algorithm
for the cases where the alphabet size is small. As a result the algorithms we
present will be best suited for biological problems, more precisely for DNA and
RNA sequences.

3 Literature Review

The well-known don’t care matching problem, where a don’t care character can
match any character of the alphabet, can be seen as a special case of our prob-
lem as is evident from Section 2. Don’t care matching problems and variants
thereof have received tremendous attention in stringology research. Although,
these algorithms can’t be directly generalized to solve the more general problem
we wish to handle, we present a brief literature review of the problem because
we need to solve a restricted version of the problem in our algorithm.

5 the authors also presented a O((n + s) log3 m) randomized algorithm for the same
problem.
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Fischer and Paterson [11] introduced and solved the don’t care matching
problem in O(n log m log Σ) time6. Since their (deterministic) algorithm in
1974, the only improvements were by Muthukrishan and Palem [21], who reduced
the constant factor. And in fact the string matching with don’t cares problem is
proved to be at least as hard as the boolean convolution problem [22]. Indyk [15],
on the other hand gave a randomized algorithm that also involved convolutions,
running in time O(n log n). Kalai [16] presented a slightly better but much sim-
pler randomized algorithm which runs in O(n log m) time. Pinter [25] on the
other hand used the Aho-Corasick algorithm [2] to solve the problem. Unfor-
tunately, however, the time complexity, in the limiting case, can be as high as
O(mn) [24].

There have been a number of attempts to handle the degenerate words or
the indeterminate string as is sometimes mentioned in the literature, although
mostly from a practical context. Abrahamson, dealt with a similar problem in [1]
where he presented an algorithm that runs in O(n + m

√
n log n

√
log log n) time.

However, this problem can be tackled efficiently, in practice, by the bit-mapping
technique, originally proposed in [10], reinvented in [4, 29] and available in the
agrep utility [28], until recently virtually the only practical algorithm available
for indeterminate pattern-matching. The algorithm presented in [4] can solve the
problem in O(⌈mb/w⌉n) time given a preprocessing time of O(⌈mb/w⌉(m|Σ| +
|Σ|)). Here w is the length of the word in the target machine and b is the
number of bits to represent each individual “state” (see [4] for detail). Very
recently Holub et al. [13] presented practically efficient algorithms for the same
problem and a number of variants thereof. The algorithms of [13] are based on
the Sunday variant [27] of the Boyer-Moore algorithm [5], in practice [14, 19] one
of the fastest exact pattern-matching algorithms.

Recently, Lee et al. [20] cleverly used a bit masking technique to handle the
sets of characters for problems where the alphabet size is small. The motivation
comes from the fact that in biological applications the alphabet size is very
small and can be considered constant. And notably, the degenerate words are
frequently found in DNA and RNA sequences and hence is very much relevant
with respect to the biological problems. In this paper we also try to exploit the
advantage of a small alphabet size to handle the degenerate words in an efficient
way.

4 Our approach

We first discuss our approach for Problem 1 where we are given a pattern P and
a text T and T can contain sets of characters. The basic idea of our approach
is as follows. We consider each position in T and P as a class or a set (for P
each position is a set of one character i.e. a singleton set). For each character in
the alphabet, we construct a smaller similar problem, namely a restricted don’t
care matching problem, to be defined shortly, and solve them separately. The

6 The running time reported in [11], O(n log2 m log log m log |Σ|), is slightly higher
because they do not use the RAM model.
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results are then combined to get the final result. Let us first formally define the
restricted don’t care matching problem.

Problem 4. We are given a text T and a pattern P over Σ ∪ {∗}, where Σ is
such that |Σ| = 2 and * is a don’t care character. The problem is to report all
the occurrences of P in T .

Remark 3. Since |Σ| = 2, using the algorithm of [11] we can solve Problem 4 in
O(n log m) time.

Algorithm 2

Input: A text T such that T may contain sets of characters and a pattern P which
does not contain sets of characters.

output: The set of indices where P occurs in T .
1: for a ǫ Σ do

2: Construct T ′ where for all i, 1 ≤ i ≤ n, T ′[i] =



1, if T [i] = a

0, if T [i] 6= a.

3: Construct P ′ where for all i, 1 ≤ i ≤ m, P ′[i] =



1, if P [i] = a

*, if P [i] 6= a.

4: Solve the don’t care matching problem for the text T ′ and the pattern
P ′. Let Ma denote the set of indices where P ′ occurs in T ′ i.e. Ma =
{i | P ′occurs at position i of T ′}

5: end for

6: Compute M =
T

a ǫ Σ
Ma

7: return M

Now we are ready to formally state the algorithm in the form of Algorithm 2.
The analysis of Algorithm 2 is straightforward. Step 2 and Step 3 can be done
implicitly, while performing Step 4. Therefore in Step 1 we basically perform
Step 4 |Σ| times requiring O(|Σ|n log m) time. Step 6 can be done incremen-
tally in the loop and hence the total running time would remain the same i.e.
O(|Σ|n log m).

Remark 4. It is easy to verify that, if P contains sets of characters instead of
T , we just need to swap the definitions of T ′ and P ′ in Step 2 and Step 3
respectively.

Remark 5. We would also like to note that, if both T and P are degenerate the
algorithm wouldn’t work properly.

Example 2. Suppose we are given a text T and a pattern P as follows:

T = AA[CGT ]G[AG]T [AT ]CG[AG]TATC[ACGT ]C[GT ]GTAA[CG]

P = ACGGTA

How the algorithm works is illustrated in Figure 2, 3, 4 and 5.
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Text A A [CGT] G [AG] T [AT] C G [AG] T A T C [ACGT] C [GT] G

A 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0
C 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0
G 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 1
T 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0

Fig. 2. Text T and T ′ for each a ǫ Σ of Example 2

Pattern A C G G T A

A 1 * * * * 1

C * 1 * * * *

G * * 1 1 * *

T * * * * 1 *

Fig. 3. Pattern P and P ′ for each a ǫ Σ of Example 2

Text 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

MA X X X X

MC X X X

MG X X X

MT X X X X X X

M X X

Fig. 4. Intermediate matching solutions (Ma for each a ǫ Σ)and the final solution M

of Example 2

A C G G T A

A A [CGT] G [AG] T [AT] C G [AG] T A T C [ACGT] C [GT] G

A C G G T A

Fig. 5. Occurrence of P in T of Example 2

We now present our results in the form of following theorem and corollaries.

Theorem 1. Problem 1 and 2 can be solved in O(|Σ|(χ + n)) time where χ is

the running time to solve Problem 4.

Remark 6. Note that the O(n) factor in the running time in Theorem 1 comes
from the intersection operation required in Step 6.

Corollary 1. Problem 1 and 2 can be solved in O(|Σ|n log m) time.

Corollary 2. For DNA and RNA sequences Problem 1 and 2 can be solved in

O(n log m) time.

In the rest of this section we discuss a practically efficient implementation
technique of our approach.

5 Implementation

In Section 4 we have presented a O(n log m) time algorithm for both Problem 1
and 2. Our algorithm makes use of the Fast Fourier Transformation (FFT) tech-
nique [11]. Since FFT algorithms have large hidden constants, in real applications
they don’t perform well. It is easy to see that our algorithms also suffer from
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the same problem inspite of the good theoretical bound. In this section, on the
other hand, we present a technique to implement our approach without employ-
ing FFT. As will be seen from the analysis, the resulting algorithm runs in linear
time for sufficiently short patterns.

As before we first consider Problem 1 and then show the changes that need
be done to solve Problem 2. The key idea of our implementation depends on the
following interesting observation.

Observation 1 Suppose S1 is a string over the alphabet {1, 0} and S2 is a

string over the alphabet {1, ∗} where ‘∗’ is the don’t care character. Assume also

that |S1| = |S2|. Now S2 matches S1 if and only if S′
2 ∧S1 = S′

2 where ‘∧’ is the

bitwise ‘and’ operator and S′
2[i] =

{

1, if S′
2[i] = 1

0, if S′
2[i] = ∗.

Based on Observation 1 we can present a straightforward algorithm (Algo-
rithm 3) to implement Algorithm 2. In what follows we use the idea of factor
as follows. Given a string S, a factor of S, denoted by S[i..j] is the substring
S[i]S[i + 1]...S[j] where 1 ≤ i ≤ j ≤ |S|.

Algorithm 3

1: for a ǫ Σ do

2: Construct T ′ where for all i, 1 ≤ i ≤ n, T ′[i] =



1, if T [i] = a

0, if T [i] 6= a.

3: Construct P ′ where for all i, 1 ≤ i ≤ m, P ′[i] =



1, if P [i] = a

0, if P [i] 6= a.
4: Ma = ǫ {Each Ma is a bit string and ’+’ with respect to it indicates concatena-

tion}
5: for i = 1 to n − m + 1 do

6: if P ′ ∧ T ′[i..i + m − 1] = P ′ then

7: Ma = Ma + ‘1’
8: else

9: Ma = Ma + ‘0’
10: end if

11: end for

12: end for

13: Compute M =
V

a ǫ Σ
Ma

14: Return M

Let us now analyze the running time of Algorithm 3. Step 2 and Step 3
requires O(n + m) time. In the ‘For loop’ of Step 5, we perform bitwise ‘and’

operations for every position of the text7. What we plan to do is to perform
the bitwise ‘and’ operations word by word. So, if w is the word size of the
target machine then we get a running time of O(n⌈m

w
⌉) instead of O(nm). Thus

in total Step 5 can be performed in O(|Σ|n⌈m
w
⌉) time. Similarly, Step 13 can

7 We can do better than checking each position by applying techniques of [27, 5] and
thereby improve our average running time
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be performed in O(|Σ|⌈ n
w
⌉) time. Therefore the overall running time should be

O(n + m + |Σ|n⌈m
w
⌉ + |Σ|⌈ n

w
⌉). In many practical cases we can assume w ∼ m

which implies a linear running time for DNA and RNA sequences (since |Σ| = 4).
So far we have only considered Problem 1. From the Observation 1 it should be
clear that to handle Problem 2 the only change that need be done is in the ‘if ’

statement of Step 6. The complete ‘if ’ statement, modified to handle Problem 2
is given in Figure 6.

if P ′ ∧ T ′[i..i + m − 1] = T ′[i..i + m − 1] then

Ma = Ma + ‘1’
else

Ma = Ma + ‘0’
end if

Fig. 6. Modification to handle Problem 2

We now summarize our results in the form of following theorem and corollary.

Theorem 2. Problem 1 and 2 can be solved in O(n + m + |Σ|n⌈m
w
⌉ + |Σ|⌈ n

w
⌉)

time

Corollary 3. For DNA and RNA sequences Problem 1 and 2 can be solved in

O(n + m + n⌈m
w
⌉ + ⌈ n

w
⌉) time.

6 Other Applications

The approach we take to solve the problems in this paper can be applied in
other contexts as well especially when the alphabet size is small. In this section
we attack another related problem in pattern matching, namely the Distributed

Pattern Matching Problem and show how we can solve it using our approach. A
family of distributed pattern matching problems were first introduced in [9] and
then handled in [12]. We first define the problems below.

Problem 5. We are given s texts T i = T i[1]T i[2]...T i[n], i ǫ {1, ..., s} of equal
length n over the alphabet Σ and a pattern P = P [1]P [2]...P [m] of length m ≤ n
over the same alphabet Σ. The problem is to find all occurrences of the pattern
P in the texts T i, i ǫ {1, ..., s}, such that the various parts of the pattern P
can be located in consecutive positions of different texts, i.e. find all positions
k ǫ {1, ..., n − m + 1}, such that for each j ǫ {1, ..., m}, there exists an integer
lj ǫ {1, ..., s}, such that P [j] = T lj [k + j − 1].

Problem 6. We are given a text T = T [1]T [2]...T [n] of length n over an alphabet
Σ and r patterns P i = P i[1]P i[2]...P i[m], i ǫ {1, ..., r} of equal length m ≤ n.
The problem is to find all occurrences P in T such that each symbol of the
found string matches a symbol from any pattern P i located at the corresponding
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position, i.e. find all positions k ǫ {1, ..., n−m+1}, in the text T such that for each
j ǫ {1, ..., m}, there exists an integer lj ǫ {1, ..., r} such that P lj [j] = T [k + j − 1].

In [12] the authors solve the above problems by constructing the Nondeter-
ministic Finite Automata (NFA) for them and then simulating them using the
Shift-Or algorithm [4]. For both Problem 5 and 6 the running time achieved
in [12] is, O((M + |Σ| + N)⌈m

w
⌉). Here for Problem 5, M = m and N = ns

and for Problem 6, M = mr and N = n. We, on the other hand employ the
same technique we use in Section 4. But before that we need to do some pre-
processing as follows. In what follows we consider Problem 5. We are given s
texts T i, i ǫ {1, ..., s} of equal length n and a pattern P of length m ≤ n. We
construct a string T from the given strings where each position j of T is a set of
characters comprising of the characters at position j of each of T [i], 1 ≤ i ≤ s.
In particular we construct a new (degenerate) string T such that

T [j] = [T 1[j]T 2[j]...T s[j]], 1 ≤ j ≤ n.

It is easy to see that now we can use Algorithm 2 and 3 to solve Problem 5 by
supplying T and P as input text and pattern respectively.
To solve Problem 6, the only change that need be done is in the preprocessing
step described above. For this one we need to do the same preprocessing as
described above the only difference being that the preprocessing is to be applied
on the set of patterns instead of the text. The preprocessing step would take
O(ns) for Problem 5 and O(mr) for Problem 6. So we get the following theorem.

Theorem 3. Problem 5 can be solved in O(ns + ξ) time and Problem 6 can be

solved in O(mr + ξ) time, where ξ is the running time of Algorithm 2.

Using the result of Corollary 1 and Theorem 2 we get the following Corollaries.

Corollary 4. Problem 5 can be solved in O(ns+|Σ|n log m) time and Problem 6

can be solved in O(mr + |Σ|n log m) time.

Corollary 5. Problem 5 and Problem 6 can be solved in O(R+n+m+|Σ|n⌈m
w
⌉+

|Σ|⌈ n
w
⌉) time, where R = ns and mr for Problem 5 and Problem 6 respectively.

7 Conclusion

In this paper, we have presented an asymptotically faster algorithm for pattern
matching, where either the text or the pattern can be degenerate. Our approach
is alphabet dependent and hence is best suited for problems where the alphabet
size is small. Therefore our Our algorithm is particularly suitable for DNA and/or
RNA sequences. It may be noted here that degenerate words are frequently exis-
tent in problems with DNA and RNA sequences. In particular, we have presented
an O(n log m) algorithm for pattern matching in DNA or RNA sequences where
either the pattern or the text may be degenerate. We also present an efficient
implementation of our algorithm that works in O(n + m + n⌈m

w
⌉+ ⌈ n

w
⌉) time. It
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is easy to observe that for sufficiently short patterns this will work in linear time.
We also consider a variant of pattern matching problem namely the distributed
pattern matching problem and show how our approach can be used to solve this
problem efficiently.

Finally, one other interesting aspect of our technique lies in the fact that
if the text has sets of characters in the original problem then, in the subprob-
lems created by our approach, the pattern contains don’t care characters and
vice versa. This aspect can be exploited to solve a number of pattern matching
problems as follows. In the literature almost all don’t care matching problems
and variants thereof consider only patterns to have don’t cares. So, if we need to
solve a pattern matching problem, where the text contains don’t cares instead of
the pattern, we can apply our technique to transform the problem to problems
where patterns have the don’t cares instead of the text.
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