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Abstract. In an orthogonal drawing of a planar graph G, each vertex is
drawn as a point, each edge is drawn as a sequence of alternate horizon-
tal and vertical line segments, and any two edges do not cross except at
their common end. A bend is a point where an edge changes its direction.
A drawing of G is called an optimal orthogonal drawing if the number
of bends is minimum among all orthogonal drawings of G. In this pa-
per we give an algorithm to find an optimal orthogonal drawing of any
given series-parallel graph of the maximum degree at most three. Our
algorithm takes linear time, while the previously known best algorithm
takes cubic time. Furthermore, our algorithm is much simpler than the
previous one. We also obtain a best possible upper bound on the number
of bends in an optimal drawing.
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1 Introduction

Automatic graph drawings have numerous applications in VLSI circuit layouts,
networks, computer architecture, circuit schematics, etc. [3, 10]. Many graph
drawing styles have been introduced [1, 3, 8, 10, 14, 16]. Among them, an “or-
thogonal drawing” has attracted much attention due to its various applications,
specially in circuit schematics, entity relationship diagrams, data flow diagrams,
etc. [13, 15, 18, 19]. An orthogonal drawing of a planar graph G is a drawing of
G such that each vertex is mapped to a point, each edge is drawn as a sequence
of alternate horizontal and vertical line segments, and any two edges do not
cross except at their common end. A point where an edge changes its direction
in a drawing is called a bend of the drawing. Figure 1(a) depicts an orthogonal
drawing of the planar graph in Fig. 1(b); the drawing has exactly one bend on
the edge joining vertices g and t. If a planar graph G has a vertex of degree five
or more, then G has no orthogonal drawing. On the other hand, if G has no
vertex of degree five or more, that is, the maximum degree ∆ of G is at most
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four, then G has an orthogonal drawing, but may need bends. If a planar graph
represents a VLSI routing, then one may be interested in an orthogonal drawing
such that the number of bends is as small as possible, because bends increase the
manufacturing cost of a VLSI chip. An orthogonal drawing of a planar graph G
is called an optimal orthogonal drawing if it has the minimum number of bends
among all possible orthogonal drawings of G.
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Fig. 1. (a) An optimal orthogonal drawing with one bend, (b), (c) two embeddings of
the same planar graph, and (d) an orthogonal drawing with three bends.

The problem of finding an optimal orthogonal drawing is one of the most
famous problems in the graph drawing literature [3, 10] and has been studied
both in the fixed embedding setting [6, 13, 15, 17, 19] and in the variable embed-
ding setting [5, 7, 12]. A planar graph with a fixed embedding is called a plane
graph. As a result in the fixed embedding, Tamassia [19] presented an algorithm
to find an optimal orthogonal drawing of a plane graph G in time O(n2 log n)
where n is the number of vertices in G; he reduced the optimal drawing problem
to a min-cost flow problem. Then Garg and Tamassia improved the complex-
ity to O(n7/4

√
log n) [6]. As a result in the variable embedding setting, Garg

and Tamassia showed that the problem is NP-complete for planar graphs of
∆ ≤ 4 in the variable embedding setting [7]. However, Di Battista et al. [5]
showed that the problem can be solved in polynomial time for planar graphs
G of ∆ ≤ 3. Their algorithm finds an optimal orthogonal drawing among all
possible plane embeddings of G. They use the properties of “spirality,” min-cost
flow techniques, and a data structure, call a SPQ∗R-tree that implicitly repre-
sents all the plane embeddings of G. The algorithm is complicated and takes
time O(n5 log n) for planar graph of ∆ ≤ 3. Using the algorithm, one can find
an optimal orthogonal drawing of a biconnected series-parallel simple graph of
∆ ≤ 4 and of ∆ ≤ 3 in time O(n4) [5] and in time O(n3) [4], respectively. Note
that every series-parallel graph is planar. Series-parallel graphs arise in a variety
of problems such as scheduling, electrical networks, data-flow analysis, database
logic programs, and circuit layout [20]. The complexities O(n5 log n), O(n4) and
O(n3) above for the variable embedding setting are very high, and it is expected
to obtain an efficient algorithm for a particular class of planar graphs of ∆ ≤ 3
[2].
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In this paper we deal with the class of series-parallel (multi)graphs of ∆ ≤ 3,
and give a simple linear algorithm to find an optimal orthogonal drawing in
the variable embedding setting. The graph G in Fig. 1 is series-parallel, and has
various plane embeddings; two of them are illustrated in Figs. 1(b) and (c); there
is no plane embedding having an orthogonal drawing with no bend; however, the
embedding in Fig. 1(b) has an orthogonal drawing with one bend as illustrated
in Fig. 1(a) and hence the drawing is optimal; the embedding in Fig. 1(c) needs
three bends as illustrated in Fig. 1(d); given G, our algorithm finds an optimal
drawing in Fig. 1(a). Our algorithm works well even if G has multiple edges
or is not biconnected, and is much simpler and faster than the algorithms for
biconnected series-parallel simple graphs in [4, 5]; we use neither the min-cost
flow technique nor the SPQ∗R tree, but uses some structural features of series-
parallel graphs, which have not been exploited in [20]. We furthermore obtain a
best possible upper bound on the minimum number of bends.

The rest of the paper is organized as follows. In Section 2 we present some
definitions and our main idea. In Section 3 we present an algorithm and an upper
bound for biconnected series-parallel graphs. Finally Section 4 is a conclusion.
We omit a linear algorithm for non-biconnected series-parallel graphs in this
extended abstract, due to the page limitation.

2 Preliminaries

In this section we present some definitions and our main idea.

Let G = (V, E) be an undirected graph with vertex set V and edge set E. We
denote the number of vertices in G by n(G) or simply by n. For a vertex v ∈ V ,
we denote by G − v the graph obtained from G by deleting v. An edge joining
vertices u and v is denoted by uv. We denote by G − uv the graph obtained
from G by deleting uv. We denote the degree of a vertex v in G by d(v, G) or
simply by d(v). We denote the maximum degree of G by ∆(G) or simply by
∆. A connected graph is biconnected if there is no vertex whose removal results
in a disconnected graph or a single-vertex graph K1. A plane graph is a fixed
embedding of a planar graph.

Let G be a planar graph of ∆ ≤ 3. We denote by bend(G) the number of bends
of an optimal orthogonal drawing of G in the variable embedding setting. (Thus
bend(G) = 1 for the graph G in Fig. 1.) Let D be an orthogonal drawing of G. The
number of bends in D is denoted by bend(D). Of course, bend(G) ≤ bend(D).
Let G(D) be a plane graph obtained from a drawing D by replacing each bend
in D with a new vertex. Figures 2(a) and (b) depict G(D) for the drawings
D in Figs. 1(a) and (d), respectively. An angle formed by two edges e and e′

incident to a vertex v in G(D) is called an angle of vertex v if e and e′ appear
consecutively around v. An angle of a vertex in G(D) is called an angle of the
plane graph G(D). In an orthogonal drawing, every angle is π/2, π, 3π/2 or 2π.
Consider a labeling l which assigns a label 1, 0, −1 or −2 to every angle of G(D).
Labels 1, 0, −1 and −2 correspond to angles π/2, π, 3π/2 and 2π, respectively.
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We call l a regular labeling of G(D) if l satisfies the following three conditions
(a)–(c) [10, 19]:

(a) for each vertex v of G(D),

(a-1) if d(v) = 1 then the label of the angle of v is −2,
(a-2) if d(v) = 2 then the labels of the two angles of v total to 0, and
(a-2) if d(v) = 3 then the labels of the three angles of v total to 2;

(b) the sum of the labels of each inner face is 4; and
(c) the sum of the labels of the outer face is −4.
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Fig. 2. Regular labelings of G(D) corresponding to the drawings D in Figs. 1(a) and
(d), respectively.

Figures 2(a) and (b) illustrate regular labelings for the orthogonal drawings in
Figs. 1(a) and (d), respectively. If D is an orthogonal drawing of G, then clearly
G(D) has a regular labeling. Conversely, every regular labeling of G(D) corre-
sponds to an orthogonal drawing of G [19]. An orthogonal (geometric) drawing
of G can be obtained from a regular labeling of G(D) in linear time, that is,
in time O(n(G) + bend(D)) [10, 19]. Therefore, from now on, we call a regular
labeling of G(D) an orthogonal drawing of a planar graph G or simply a drawing
of G, and obtain a regular labeling of G in place of an orthogonal (geometric)
drawing of G.

A series-parallel graph (with terminals s and t) is recursively defined as fol-
lows:

(a) A graph G of a single edge is a series-parallel graph. The ends s and t of
the edge are called the terminals of G.

(b) Let G1 be a series-parallel graph with terminals s1 and t1, and let G2 be
a series-parallel graph with terminals s2 and t2.

(i) A graph G obtained from G1 and G2 by identifying vertex t1 with
vertex s2 is a series-parallel graph, whose terminals are s = s1 and
t = t2. Such a connection is called a series connection.

(ii) A graph G obtained from G1 and G2 by identifying s1 with s2 and
t1 with t2 is a series-parallel graph, whose terminals are s = s1 = s2

and t = t1 = t2. Such a connection is called a parallel connection.
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For example, the graph in Fig. 1 is series-parallel.
Throughout the paper we assume that the maximum degree of a given series-

parallel graph G is at most three, that is, ∆ ≤ 3. We may assume without loss of
generality that G is a simple graph, that is, G has no multiple edges, as follows.
If a series-parallel multigraph G consists of exactly three multiple edges, then
G has an optimal drawing of four bends; otherwise, insert a dummy vertex of
degree two into an edge of each pair of multiple edges in G, and let G′ be the
resulting series-parallel simple graph, then an optimal drawing of the multigraph
G can be immediately obtained from an optimal drawing of the simple graph G′

by replacing each dummy vertex with a bend.
A drawing D of a series-parallel graph G is outer if the two terminals s and

t of G are drawn on the outer face of D. A drawing D is called an optimal outer
drawing of G if D is outer and bend(D) = bend(G). The graph in Fig. 1 has an
optimal outer drawing as illustrated in Fig. 1(a). On the other hand, the graph
in Fig. 3(a) has no optimal outer drawing for the specified terminals s and t; the
no-bend drawing D in Fig. 3(b) is optimal but is not outer, because s is not on
the outer face; and the drawing Do with one bend in Fig. 3(c) is outer but is
not optimal.

tt

D D

t
s

s

(b) (c) o

s

(a) G

Fig. 3. (a) A biconnected series-parallel graph G, (b) an optimal drawing D, and (c)
an outer drawing D

o.

Our main idea is to notice that a series-parallel graph G has an optimal
outer drawing if G is “2-legged.” We say that G is 2-legged if n(G) ≥ 3 and
d(s) = d(t) = 1 for the terminals s and t of G. The edge incident to s or t is
called a leg of G, and the neighbor of s or t is called a leg-vertex. For example,
the series-parallel graphs in Figs. 4(a)–(c) are 2-legged.

We will show in Section 3 that every 2-legged series-parallel graph G has an
optimal outer drawing and the drawing has one of the three shapes, “I-shape,”
“L-shape” and “U-shape,” defined as follows. An outer drawing D of G is I-
shaped if D intersects neither the north side of terminal s nor the south side of
terminal t after rotating the drawing and renaming the terminals if necessary,
as illustrated in Fig. 4(a). D is L-shaped if D intersects neither the north side of
s nor the east side of t after rotating the drawing and renaming the terminals if
necessary, as illustrated in Fig. 4(b). D is U-shaped if D does not intersect the
north sides of s and t after rotating the drawing and renaming the terminals
if necessary, as illustrated in Fig. 4(c). In Figs. 4(a)–(c) each side is shaded.
The north side and the south side of a terminal contain the horizontal line
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Fig. 4. (a)–(c) I-, L- and U-shaped drawings, and (d)–(f) their schematic representa-
tions.

passing through the terminal, while the east side of a terminal contains the
vertical line passing through the terminal. The schematic representations of I-,
L-, and U-shaped drawings are depicted in Figs. 4(d), (e) and (f), respectively.
D is called an optimal X-shaped drawing, X=I, L and U, if D is X-shaped and
bend(D) = bend(G).

More precisely, we will show in Section 3 that every 2-legged series-parallel
graph G with n(G) ≥ 3 has both an optimal I-shaped drawing and an optimal
L-shape drawing and that G has an optimal U-shaped drawing, too, unless G is a
“diamond graph,” defined as follows. A diamond graph is either a path with three
vertices or obtained from two diamond graphs by connecting them in parallel
and adding two legs.

s t ts

(e)(a) (c)(b) (d)

s ts

t
t

s

Fig. 5. (a) Diamond graph, (b) I-shaped drawing, (c) L-shaped drawing, (d) non-
diamond graph, and (e) U-shaped drawing.

For example, the 2-legged series-parallel graph in Fig. 5(a) is a diamond
graph, and has both an optimal (no-bend) I-shaped drawing and an optimal (no-
bend) L-shaped drawing as illustrated in Figs. 5(b) and (c), but does not have
an optimal (no-bend) U-shaped drawing. On the other hand, the 2-legged series-
parallel graph in Fig. 5(d) is obtained from the diamond graph in Fig. 5(a) simply
by inserting a new vertex of degree two in an edge, and is not a diamond graph
any more. It has an optimal (no-bend) U-shaped drawing, too, as illustrated in
Fig. 5(e). Thus the diamond graph in Fig. 5(a) has a U-shaped drawing with
one bend.
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3 Optimal Drawing of Biconnected Series-Parallel Graph

In this section we give a linear algorithm to find an optimal drawing of a bicon-
nected series-parallel graph G of ∆ ≤ 3. We first give an algorithm for 2-legged
series-parallel graphs in Subsection 3.1. Using the algorithm, we then give an
algorithm for biconnected series-parallel graphs in Subsection 3.2.

3.1 2-legged Series-Parallel Graph

We first have the following lemma on a diamond graph. (The proofs of all theo-
rems and lemmas are omitted in this extended abstract, due to the page limita-
tion.)

Lemma 1. If G is a diamond graph, then

(a) G has both a no-bend I-shaped drawing DI and a no-bend L-shaped drawing
DL;

(b) DI and DL can be found in linear time; and
(c) every no-bend drawing of G is either I-shaped or L-shaped, and hence G

does not have a no-bend U-shaped drawing.

The proof of Lemma 1 immediately yields a linear algorithm Diamond(G, DI, DL)
which recursively finds both a no-bend I-shaped drawing DI and a no-bend L-
shaped drawing DL of a given diamond graph G.

The following lemma holds for a 2-legged series-parallel graph G which is not
a diamond graph.

Lemma 2. The following (a) and (b) hold for a 2-legged series-parallel graph G
with n(G) ≥ 3 unless G is a diamond graph:

(a) G has three optimal I-, L- and U-shaped drawings DI, DL and DU;
(b) DI, DL and DU can be found in linear time; and
(c) bend(G) ≤ (n(G) − 2)/3.

We denote by Kn a complete graph of n(≥ 1) vertices. Let G be a 2-legged
series-parallel graph obtained from copies of K2 and K3 by connected them
alternately in series, as illustrated in Fig. 6. Then bend(G) = (n(G)−2)/3. Thus
the bound in Lemma 2(c) is best possible.

Fig. 6. A graph attaining the bound in Lemma 2(c).

The proof of Lemma 2 immediately yields a linear algorithm Non-Diamond(
G, DI, DL, DU) which recursively finds three optimal I-, L- and U-shaped draw-
ings DI, DL and DU of a given 2-legged series-parallel graph G unless G is a
diamond graph. By algorithms Diamond and Non-Diamond one can find an
optimal drawing of a 2-legged series-parallel graph G.
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3.2 Biconnected Series-parallel Graphs

A biconnected series-parallel graph G can be defined (without specifying termi-
nals) as a biconnected graph which has no K4 as a minor. For every edge uv in
G, G is a series-parallel graph with terminals u and v.

A cycle C of four vertices in a graph G is called a diamond if two non-
consecutive vertices of C have degree two in G and the other two vertices of C
have degree three and are not adjacent in G. We denote by G/C the graph ob-
tained from G by contracting C to a new single vertex vC . (Note that GC = G/C
is series-parallel if G is series-parallel. One can observe that, from every diamond
graph, one can obtain a path with three vertices by repeatedly contracting a di-
amond.)

Noting that every biconnected series-parallel graph has a vertex of degree
two, one can easily observe that the following Lemma 3 holds. (Lemma 3 is also
an immediate consequence of Lemma 2.1 in [9] on general series-parallel graphs.)

Lemma 3. Every biconnected series-parallel graph G of ∆ ≤ 3 has, as a sub-
graph, one of the following three substructures (a)–(c):

(a) a diamond C;
(b) two adjacent vertices u and v such that d(u) = d(v) = 2; and
(c) a complete graph K3 of three vertices u, v and w such that d(v) = 2.

Our idea is to reduce the optimal drawing problem for a biconnected series-
parallel graph G to that for a smaller graph G′ as in the following Lemma 4.

Lemma 4. Let G be a biconnected series-parallel graph with n(G) ≥ 6.

(a) If G has a diamond C, then bend(G) = bend(G′) for G′ = G/C.
(b) If G has a substructure (b) in Lemma 3(b), then bend(G) = bend(G′) for

G′ = G − uv.
(c) If G has a substructure (c) in Lemma 3(c), then bend(G) = bend(G′) + 1

for G′ = G − v − uw.

From the proof of Lemma 4 we have the following algorithm Biconnected(G,
D) to find an optimal drawing D of a biconnected series-parallel graph G.

Biconnected(G, D);
begin

One may assume that n(G) ≥ 6 (otherwise, one can easily find an optimal
drawing D of G in linear time);
{ By Lemma 3 G has one of the three substructures (a)–(c) in Lemma 3. }
Case 1: G has a diamond C;
Let G′ = G/C; { G′ is a biconnected series-parallel graph. }
Biconnected(G′, D′);
Extend an optimal drawing D′ of G′ to an optimal drawing D of G simply
by replacing vC by a rectangular drawing of C;

Case 2: G has no diamond, but has a substructure (b);
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Let G′ = G − uv;
{ G′ is a 2-legged series-parallel graph with terminals u and v, and is not
a diamond graph. }
Find an optimal U-shaped drawing D′

U
of G′ by Non-Diamond;

{ cf. Lemma 2 }
Extend D′

U
to an optimal drawing D of G by drawing uv as a straight

line segment; { cf. Lemma 4 }
Case 3: G has neither a diamond nor a substructure (b), but has a substructure

(c);
Let G′ = G − v − uw;
{ G′ is a 2-legged series-parallel graph with terminals u and w, and is not
a diamond graph. }
Find an optimal U-shaped drawing D′

U
of G′ by Non-Diamond;

Extend D′

U
to an optimal drawing D of G by drawing K3 = uvw as a

rectangle with one bend; { cf. Lemma 4 }
end

All substructures (a)–(c) can be found total in time O(n) by a standard
bookkeeping method to maintain all degrees of vertices together with all paths
of length two with an intermediate vertex of degree two. One can thus observe
that Biconnected can be executed in linear time.

We thus have the following theorem.

Theorem 1. An optimal orthogonal drawing of a series-parallel biconnected
graph G of ∆ ≤ 3 can be found in linear time.

4 Conclusions

In this paper, we gave a linear algorithm to find an optimal orthogonal drawing of
a series-parallel graph G of ∆ ≤ 3 in the variable embeddings setting. Our algo-
rithm works well even if G has multiple edges or is not biconnected, and is simpler
and faster than the previously known one for biconnected series-parallel simple
graphs [4, 5]. One can easily extend our algorithm so that it finds an optimal
orthogonal drawing of a partial 2-tree of ∆ ≤ 3. Note that the so-called block-
cutvertex graph of a partial 2-tree is a tree although the block-cutvertex graph
of a series-parallel graph is a path. One can prove that bend(G) ≤ ⌈n(G)/3⌉ for
every biconnected series-parallel graph and bend(G) ≤ (n(G) + 4)/3 for every
series-parallel graph. The bounds on bend(G) are best possible.

In an orthogonal grid drawing, every vertex has an integer coordinate. The
size of an orthogonal grid drawing is the sum of width and height of the min-
imum axis-parallel rectangle enclosing the drawing. One can prove that every
biconnected series-parallel graph G of ∆ ≤ 3 has an optimal orthogonal grid
drawing of size ≤ 2N/3 + 1, where N = n(G) + bend(G).

It is left as a future work to obtain a linear algorithm for a larger class of
planar graphs.
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